支持基于事件的地理空间异常检测与地理可视化分析

O. Hoeber, M. Hasan
{"title":"支持基于事件的地理空间异常检测与地理可视化分析","authors":"O. Hoeber, M. Hasan","doi":"10.5220/0005268000170028","DOIUrl":null,"url":null,"abstract":"Collecting multiple geospatial datasets that describe the same real-world events can be useful in monitoring and enforcement situations (e.g., independently tracking where a fishing vessel travelled and where it reported to have fished). While finding the obvious anomalies between such datasets may be a simple task, discovering more subtle inconsistencies can be challenging when the datasets describe many events that cover large geographic and temporal ranges. This paper presents a geovisual analytics approach to this problem domain, automatically extracting potential event anomalies from the data, visualizing these on a map, and providing interactive filtering tools to allow expert analysts to discover and analyze patterns that are of interest. A case study is presented, illustrating the value of the approach for discovering anomalies between commercial fishing vessel movement data and their reported fishing locations. Field trial evaluations confirm the benefits of this geovisual analytics approach for supporting real-world data analyst needs.","PeriodicalId":326087,"journal":{"name":"International Conference on Information Visualization Theory and Applications","volume":"118 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Supporting Event-based Geospatial Anomaly Detection with Geovisual Analytics\",\"authors\":\"O. Hoeber, M. Hasan\",\"doi\":\"10.5220/0005268000170028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collecting multiple geospatial datasets that describe the same real-world events can be useful in monitoring and enforcement situations (e.g., independently tracking where a fishing vessel travelled and where it reported to have fished). While finding the obvious anomalies between such datasets may be a simple task, discovering more subtle inconsistencies can be challenging when the datasets describe many events that cover large geographic and temporal ranges. This paper presents a geovisual analytics approach to this problem domain, automatically extracting potential event anomalies from the data, visualizing these on a map, and providing interactive filtering tools to allow expert analysts to discover and analyze patterns that are of interest. A case study is presented, illustrating the value of the approach for discovering anomalies between commercial fishing vessel movement data and their reported fishing locations. Field trial evaluations confirm the benefits of this geovisual analytics approach for supporting real-world data analyst needs.\",\"PeriodicalId\":326087,\"journal\":{\"name\":\"International Conference on Information Visualization Theory and Applications\",\"volume\":\"118 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Visualization Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0005268000170028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Visualization Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005268000170028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

收集描述相同现实世界事件的多个地理空间数据集在监测和执法情况中可能很有用(例如,独立跟踪渔船的航行地点和报告的捕鱼地点)。虽然在这些数据集之间发现明显的异常可能是一项简单的任务,但当数据集描述了许多覆盖大地理和时间范围的事件时,发现更微妙的不一致可能是一项挑战。本文提出了一种针对该问题领域的地理可视化分析方法,自动从数据中提取潜在的事件异常,在地图上可视化这些异常,并提供交互式过滤工具,以允许专家分析人员发现和分析感兴趣的模式。给出了一个案例研究,说明了该方法在发现商业渔船运动数据与其报告的捕鱼地点之间的异常方面的价值。现场试验评估证实了这种地理可视化分析方法在支持现实世界数据分析师需求方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supporting Event-based Geospatial Anomaly Detection with Geovisual Analytics
Collecting multiple geospatial datasets that describe the same real-world events can be useful in monitoring and enforcement situations (e.g., independently tracking where a fishing vessel travelled and where it reported to have fished). While finding the obvious anomalies between such datasets may be a simple task, discovering more subtle inconsistencies can be challenging when the datasets describe many events that cover large geographic and temporal ranges. This paper presents a geovisual analytics approach to this problem domain, automatically extracting potential event anomalies from the data, visualizing these on a map, and providing interactive filtering tools to allow expert analysts to discover and analyze patterns that are of interest. A case study is presented, illustrating the value of the approach for discovering anomalies between commercial fishing vessel movement data and their reported fishing locations. Field trial evaluations confirm the benefits of this geovisual analytics approach for supporting real-world data analyst needs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages Information Visualization for CSV Open Data Files Structure Analysis VISUAL ANALYTICS OF MULTIMODAL BIOLOGICAL DATA Arc and Swarm-based Representations of Customer's Flows among Supermarkets Effect of Displaying Uncertainty in Line and Bar Charts - Presentation and Interpretation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1