蛋白质折叠的混沌

J. Bahi, Nathalie Côté, C. Guyeux
{"title":"蛋白质折叠的混沌","authors":"J. Bahi, Nathalie Côté, C. Guyeux","doi":"10.1109/IJCNN.2011.6033463","DOIUrl":null,"url":null,"abstract":"As protein folding is a NP-complete problem, artificial intelligence tools like neural networks and genetic algorithms are used to attempt to predict the 3D shape of an amino acids sequence. Underlying these attempts, it is supposed that this folding process is predictable. However, to the best of our knowledge, this important assumption has been neither proven, nor studied. In this paper the topological dynamic of protein folding is evaluated. It is mathematically established that protein folding in 2D hydrophobic-hydrophilic (HP) square lattice model is chaotic as defined by Devaney. Consequences for both structure prediction and biology are then outlined.","PeriodicalId":415833,"journal":{"name":"The 2011 International Joint Conference on Neural Networks","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Chaos of protein folding\",\"authors\":\"J. Bahi, Nathalie Côté, C. Guyeux\",\"doi\":\"10.1109/IJCNN.2011.6033463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As protein folding is a NP-complete problem, artificial intelligence tools like neural networks and genetic algorithms are used to attempt to predict the 3D shape of an amino acids sequence. Underlying these attempts, it is supposed that this folding process is predictable. However, to the best of our knowledge, this important assumption has been neither proven, nor studied. In this paper the topological dynamic of protein folding is evaluated. It is mathematically established that protein folding in 2D hydrophobic-hydrophilic (HP) square lattice model is chaotic as defined by Devaney. Consequences for both structure prediction and biology are then outlined.\",\"PeriodicalId\":415833,\"journal\":{\"name\":\"The 2011 International Joint Conference on Neural Networks\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2011 International Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2011.6033463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2011 International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2011.6033463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于蛋白质折叠是一个np完全问题,像神经网络和遗传算法这样的人工智能工具被用来试图预测氨基酸序列的三维形状。在这些尝试的基础上,假设这种折叠过程是可预测的。然而,据我们所知,这个重要的假设既没有得到证实,也没有得到研究。本文对蛋白质折叠的拓扑动力学进行了评价。从数学上证实了二维亲水-疏水(HP)方形晶格模型中的蛋白质折叠是Devaney定义的混沌。然后概述了结构预测和生物学的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Chaos of protein folding
As protein folding is a NP-complete problem, artificial intelligence tools like neural networks and genetic algorithms are used to attempt to predict the 3D shape of an amino acids sequence. Underlying these attempts, it is supposed that this folding process is predictable. However, to the best of our knowledge, this important assumption has been neither proven, nor studied. In this paper the topological dynamic of protein folding is evaluated. It is mathematically established that protein folding in 2D hydrophobic-hydrophilic (HP) square lattice model is chaotic as defined by Devaney. Consequences for both structure prediction and biology are then outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos of protein folding EEG-based brain dynamics of driving distraction Residential energy system control and management using adaptive dynamic programming How the core theory of CLARION captures human decision-making Wiener systems for reconstruction of missing seismic traces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1