视频对话中的多模态笑声识别

Sergio Escalera, Eloi Puertas, P. Radeva, O. Pujol
{"title":"视频对话中的多模态笑声识别","authors":"Sergio Escalera, Eloi Puertas, P. Radeva, O. Pujol","doi":"10.1109/CVPRW.2009.5204268","DOIUrl":null,"url":null,"abstract":"Laughter detection is an important area of interest in the Affective Computing and Human-computer Interaction fields. In this paper, we propose a multi-modal methodology based on the fusion of audio and visual cues to deal with the laughter recognition problem in face-to-face conversations. The audio features are extracted from the spectogram and the video features are obtained estimating the mouth movement degree and using a smile and laughter classifier. Finally, the multi-modal cues are included in a sequential classifier. Results over videos from the public discussion blog of the New York Times show that both types of features perform better when considered together by the classifier. Moreover, the sequential methodology shows to significantly outperform the results obtained by an Adaboost classifier.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Multi-modal laughter recognition in video conversations\",\"authors\":\"Sergio Escalera, Eloi Puertas, P. Radeva, O. Pujol\",\"doi\":\"10.1109/CVPRW.2009.5204268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laughter detection is an important area of interest in the Affective Computing and Human-computer Interaction fields. In this paper, we propose a multi-modal methodology based on the fusion of audio and visual cues to deal with the laughter recognition problem in face-to-face conversations. The audio features are extracted from the spectogram and the video features are obtained estimating the mouth movement degree and using a smile and laughter classifier. Finally, the multi-modal cues are included in a sequential classifier. Results over videos from the public discussion blog of the New York Times show that both types of features perform better when considered together by the classifier. Moreover, the sequential methodology shows to significantly outperform the results obtained by an Adaboost classifier.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

笑声检测是情感计算和人机交互领域的一个重要研究领域。在本文中,我们提出了一种基于视听线索融合的多模态方法来处理面对面对话中的笑声识别问题。从频谱图中提取音频特征,并使用微笑和笑声分类器估计嘴部运动程度,从而获得视频特征。最后,将多模态线索包含在顺序分类器中。来自纽约时报公共讨论博客的视频结果表明,当分类器同时考虑这两种类型的特征时,它们的表现更好。此外,顺序方法显示出明显优于Adaboost分类器获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-modal laughter recognition in video conversations
Laughter detection is an important area of interest in the Affective Computing and Human-computer Interaction fields. In this paper, we propose a multi-modal methodology based on the fusion of audio and visual cues to deal with the laughter recognition problem in face-to-face conversations. The audio features are extracted from the spectogram and the video features are obtained estimating the mouth movement degree and using a smile and laughter classifier. Finally, the multi-modal cues are included in a sequential classifier. Results over videos from the public discussion blog of the New York Times show that both types of features perform better when considered together by the classifier. Moreover, the sequential methodology shows to significantly outperform the results obtained by an Adaboost classifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1