真实水下图像中的鱼类识别

MAED '14 Pub Date : 2014-11-07 DOI:10.1145/2661821.2661822
S. Palazzo, Francesca Murabito
{"title":"真实水下图像中的鱼类识别","authors":"S. Palazzo, Francesca Murabito","doi":"10.1145/2661821.2661822","DOIUrl":null,"url":null,"abstract":"Kernel descriptors consist in finite-dimensional vectors extracted from image patches and designed in such a way that the dot product approximates a nonlinear kernel, whose projection feature space would be high-dimensional. Recently, they have been successfully used for fine-gradined object recogntion, and in this work we study the application of two such descriptors, called EMK and KDES (respectively designed as a kernelized generalization of the common bag-of-words and histogram-of-gradient approaches) to the MAED 2014 Fish Classification task, consisting of about 50,000 underwater images from 10 fish species.","PeriodicalId":250753,"journal":{"name":"MAED '14","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fish Species Identification in Real-Life Underwater Images\",\"authors\":\"S. Palazzo, Francesca Murabito\",\"doi\":\"10.1145/2661821.2661822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel descriptors consist in finite-dimensional vectors extracted from image patches and designed in such a way that the dot product approximates a nonlinear kernel, whose projection feature space would be high-dimensional. Recently, they have been successfully used for fine-gradined object recogntion, and in this work we study the application of two such descriptors, called EMK and KDES (respectively designed as a kernelized generalization of the common bag-of-words and histogram-of-gradient approaches) to the MAED 2014 Fish Classification task, consisting of about 50,000 underwater images from 10 fish species.\",\"PeriodicalId\":250753,\"journal\":{\"name\":\"MAED '14\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAED '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2661821.2661822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2661821.2661822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

核描述符由从图像块中提取的有限维向量组成,并以点积近似于非线性核的方式设计,其投影特征空间将是高维的。最近,它们已经成功地用于精细目标识别,在这项工作中,我们研究了两个这样的描述符,称为EMK和KDES(分别设计为常见词袋和梯度直方图方法的核化推广)在MAED 2014鱼类分类任务中的应用,该任务包括来自10种鱼类的约50,000张水下图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fish Species Identification in Real-Life Underwater Images
Kernel descriptors consist in finite-dimensional vectors extracted from image patches and designed in such a way that the dot product approximates a nonlinear kernel, whose projection feature space would be high-dimensional. Recently, they have been successfully used for fine-gradined object recogntion, and in this work we study the application of two such descriptors, called EMK and KDES (respectively designed as a kernelized generalization of the common bag-of-words and histogram-of-gradient approaches) to the MAED 2014 Fish Classification task, consisting of about 50,000 underwater images from 10 fish species.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Crowd-sourcing Applied to Photograph-Based Automatic Habitat Classification Mountain Peak Identification in Visual Content Based on Coarse Digital Elevation Models Fish Species Recognition from Video using SVM Classifier A Typical Day Based Approach To Detrend Solar Radiation Time Series Fish Species Identification in Real-Life Underwater Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1