一种双层夜间车辆探测器

Weihong Wang, Chunhua Shen, Jian Zhang, S. Paisitkriangkrai
{"title":"一种双层夜间车辆探测器","authors":"Weihong Wang, Chunhua Shen, Jian Zhang, S. Paisitkriangkrai","doi":"10.1109/DICTA.2009.33","DOIUrl":null,"url":null,"abstract":"We present a two-layer night time vehicle detector in this work. At the first layer, vehicle headlight detection is applied to find areas (bounding boxes) where the possible pairs of headlights locate in the image, the Haar feature based AdaBoost framework is then applied to detect the vehicle front. This approach has achieved a very promising performance for vehicle detection at night time. Our results show that the proposed algorithm can obtain a detection rate of over 90% at a very low false positive rate (1.5%). Without any code optimization, it also performs at a faster speed compared to the standard Haar feature based AdaBoost approach.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A Two-Layer Night-Time Vehicle Detector\",\"authors\":\"Weihong Wang, Chunhua Shen, Jian Zhang, S. Paisitkriangkrai\",\"doi\":\"10.1109/DICTA.2009.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a two-layer night time vehicle detector in this work. At the first layer, vehicle headlight detection is applied to find areas (bounding boxes) where the possible pairs of headlights locate in the image, the Haar feature based AdaBoost framework is then applied to detect the vehicle front. This approach has achieved a very promising performance for vehicle detection at night time. Our results show that the proposed algorithm can obtain a detection rate of over 90% at a very low false positive rate (1.5%). Without any code optimization, it also performs at a faster speed compared to the standard Haar feature based AdaBoost approach.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在这项工作中,我们提出了一个双层夜间车辆检测器。在第一层,应用车辆前照灯检测来查找图像中可能的前照灯对所在的区域(边界框),然后应用基于Haar特征的AdaBoost框架来检测车辆前部。该方法在夜间车辆检测中取得了很好的效果。我们的研究结果表明,该算法可以在非常低的假阳性率(1.5%)下获得超过90%的检测率。在没有任何代码优化的情况下,与基于标准Haar功能的AdaBoost方法相比,它的执行速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Two-Layer Night-Time Vehicle Detector
We present a two-layer night time vehicle detector in this work. At the first layer, vehicle headlight detection is applied to find areas (bounding boxes) where the possible pairs of headlights locate in the image, the Haar feature based AdaBoost framework is then applied to detect the vehicle front. This approach has achieved a very promising performance for vehicle detection at night time. Our results show that the proposed algorithm can obtain a detection rate of over 90% at a very low false positive rate (1.5%). Without any code optimization, it also performs at a faster speed compared to the standard Haar feature based AdaBoost approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1