Sayan Bhattacharya, M. Henzinger, Danupon Nanongkai
{"title":"全动态匹配的新确定性近似算法","authors":"Sayan Bhattacharya, M. Henzinger, Danupon Nanongkai","doi":"10.1145/2897518.2897568","DOIUrl":null,"url":null,"abstract":"We present two deterministic dynamic algorithms for the maximum matching problem. (1) An algorithm that maintains a (2+є)-approximate maximum matching in general graphs with O(poly(logn, 1/є)) update time. (2) An algorithm that maintains an αK approximation of the value of the maximum matching with O(n2/K) update time in bipartite graphs, for every sufficiently large constant positive integer K. Here, 1≤ αK < 2 is a constant determined by the value of K. Result (1) is the first deterministic algorithm that can maintain an o(logn)-approximate maximum matching with polylogarithmic update time, improving the seminal result of Onak et al. [STOC 2010]. Its approximation guarantee almost matches the guarantee of the best randomized polylogarithmic update time algorithm [Baswana et al. FOCS 2011]. Result (2) achieves a better-than-two approximation with arbitrarily small polynomial update time on bipartite graphs. Previously the best update time for this problem was O(m1/4) [Bernstein et al. ICALP 2015], where m is the current number of edges in the graph.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"New deterministic approximation algorithms for fully dynamic matching\",\"authors\":\"Sayan Bhattacharya, M. Henzinger, Danupon Nanongkai\",\"doi\":\"10.1145/2897518.2897568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present two deterministic dynamic algorithms for the maximum matching problem. (1) An algorithm that maintains a (2+є)-approximate maximum matching in general graphs with O(poly(logn, 1/є)) update time. (2) An algorithm that maintains an αK approximation of the value of the maximum matching with O(n2/K) update time in bipartite graphs, for every sufficiently large constant positive integer K. Here, 1≤ αK < 2 is a constant determined by the value of K. Result (1) is the first deterministic algorithm that can maintain an o(logn)-approximate maximum matching with polylogarithmic update time, improving the seminal result of Onak et al. [STOC 2010]. Its approximation guarantee almost matches the guarantee of the best randomized polylogarithmic update time algorithm [Baswana et al. FOCS 2011]. Result (2) achieves a better-than-two approximation with arbitrarily small polynomial update time on bipartite graphs. Previously the best update time for this problem was O(m1/4) [Bernstein et al. ICALP 2015], where m is the current number of edges in the graph.\",\"PeriodicalId\":442965,\"journal\":{\"name\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897518.2897568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New deterministic approximation algorithms for fully dynamic matching
We present two deterministic dynamic algorithms for the maximum matching problem. (1) An algorithm that maintains a (2+є)-approximate maximum matching in general graphs with O(poly(logn, 1/є)) update time. (2) An algorithm that maintains an αK approximation of the value of the maximum matching with O(n2/K) update time in bipartite graphs, for every sufficiently large constant positive integer K. Here, 1≤ αK < 2 is a constant determined by the value of K. Result (1) is the first deterministic algorithm that can maintain an o(logn)-approximate maximum matching with polylogarithmic update time, improving the seminal result of Onak et al. [STOC 2010]. Its approximation guarantee almost matches the guarantee of the best randomized polylogarithmic update time algorithm [Baswana et al. FOCS 2011]. Result (2) achieves a better-than-two approximation with arbitrarily small polynomial update time on bipartite graphs. Previously the best update time for this problem was O(m1/4) [Bernstein et al. ICALP 2015], where m is the current number of edges in the graph.