{"title":"基于变换的poi级社会邮政地理定位框架","authors":"Menglin Li, Kwan Hui Lim, Teng Guo, Junhua Liu","doi":"10.48550/arXiv.2211.01336","DOIUrl":null,"url":null,"abstract":"POI-level geo-information of social posts is critical to many location-based applications and services. However, the multi-modality, complexity and diverse nature of social media data and their platforms limit the performance of inferring such fine-grained locations and their subsequent applications. To address this issue, we present a transformer-based general framework, which builds upon pre-trained language models and considers non-textual data, for social post geolocation at the POI level. To this end, inputs are categorized to handle different social data, and an optimal combination strategy is provided for feature representations. Moreover, a uniform representation of hierarchy is proposed to learn temporal information, and a concatenated version of encodings is employed to capture feature-wise positions better. Experimental results on various social datasets demonstrate that three variants of our proposed framework outperform multiple state-of-art baselines by a large margin in terms of accuracy and distance error metrics.","PeriodicalId":126309,"journal":{"name":"European Conference on Information Retrieval","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Transformer-based Framework for POI-level Social Post Geolocation\",\"authors\":\"Menglin Li, Kwan Hui Lim, Teng Guo, Junhua Liu\",\"doi\":\"10.48550/arXiv.2211.01336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"POI-level geo-information of social posts is critical to many location-based applications and services. However, the multi-modality, complexity and diverse nature of social media data and their platforms limit the performance of inferring such fine-grained locations and their subsequent applications. To address this issue, we present a transformer-based general framework, which builds upon pre-trained language models and considers non-textual data, for social post geolocation at the POI level. To this end, inputs are categorized to handle different social data, and an optimal combination strategy is provided for feature representations. Moreover, a uniform representation of hierarchy is proposed to learn temporal information, and a concatenated version of encodings is employed to capture feature-wise positions better. Experimental results on various social datasets demonstrate that three variants of our proposed framework outperform multiple state-of-art baselines by a large margin in terms of accuracy and distance error metrics.\",\"PeriodicalId\":126309,\"journal\":{\"name\":\"European Conference on Information Retrieval\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Conference on Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.01336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.01336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Transformer-based Framework for POI-level Social Post Geolocation
POI-level geo-information of social posts is critical to many location-based applications and services. However, the multi-modality, complexity and diverse nature of social media data and their platforms limit the performance of inferring such fine-grained locations and their subsequent applications. To address this issue, we present a transformer-based general framework, which builds upon pre-trained language models and considers non-textual data, for social post geolocation at the POI level. To this end, inputs are categorized to handle different social data, and an optimal combination strategy is provided for feature representations. Moreover, a uniform representation of hierarchy is proposed to learn temporal information, and a concatenated version of encodings is employed to capture feature-wise positions better. Experimental results on various social datasets demonstrate that three variants of our proposed framework outperform multiple state-of-art baselines by a large margin in terms of accuracy and distance error metrics.