使用Arduino板的人工智能控制杆平衡

José Luis Revelo Orellana, Oscar Chang
{"title":"使用Arduino板的人工智能控制杆平衡","authors":"José Luis Revelo Orellana, Oscar Chang","doi":"10.37815/rte.v33n2.852","DOIUrl":null,"url":null,"abstract":"Automation Process (AP) is an important issue in the current digitized world and, in general, represents an increase in the quality of productivity when compared with manual control. Balance is a natural human capacity as it relates to complex operations and intelligence. Balance Control presents an extra challenge in automation processes, due to the many variables that may be involved.  This work presents a physical balancing pole where a Reinforcement Learning (RL) agent can explore the environment, sense its position through accelerometers, and wirelessly communicate and eventually learns by itself how to keep the pole balanced under noise disturbance. The agent uses RL principles to explore and learn new positions and corrections that lead toward more significant rewards in terms of pole equilibrium. By using a Q-matrix, the agent explores future conditions and acquires policy information that makes it possible to maintain stability. An Arduino microcontroller processes all training and testing. With the help of sensors, servo motors, wireless communications, and artificial intelligence, components merge into a system that consistently recovers equilibrium under random position changes. The obtained results prove that through RL, an agent can learn by itself to use generic sensors, actuators and solve balancing problems even under the limitations that a microcontroller presents.","PeriodicalId":117722,"journal":{"name":"Revista Tecnológica - ESPOL","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-controlled pole balancing using an Arduino board\",\"authors\":\"José Luis Revelo Orellana, Oscar Chang\",\"doi\":\"10.37815/rte.v33n2.852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automation Process (AP) is an important issue in the current digitized world and, in general, represents an increase in the quality of productivity when compared with manual control. Balance is a natural human capacity as it relates to complex operations and intelligence. Balance Control presents an extra challenge in automation processes, due to the many variables that may be involved.  This work presents a physical balancing pole where a Reinforcement Learning (RL) agent can explore the environment, sense its position through accelerometers, and wirelessly communicate and eventually learns by itself how to keep the pole balanced under noise disturbance. The agent uses RL principles to explore and learn new positions and corrections that lead toward more significant rewards in terms of pole equilibrium. By using a Q-matrix, the agent explores future conditions and acquires policy information that makes it possible to maintain stability. An Arduino microcontroller processes all training and testing. With the help of sensors, servo motors, wireless communications, and artificial intelligence, components merge into a system that consistently recovers equilibrium under random position changes. The obtained results prove that through RL, an agent can learn by itself to use generic sensors, actuators and solve balancing problems even under the limitations that a microcontroller presents.\",\"PeriodicalId\":117722,\"journal\":{\"name\":\"Revista Tecnológica - ESPOL\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Tecnológica - ESPOL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37815/rte.v33n2.852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Tecnológica - ESPOL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37815/rte.v33n2.852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动化过程(AP)是当前数字化世界中的一个重要问题,总的来说,与人工控制相比,它代表了生产力质量的提高。平衡是一种自然的人类能力,因为它涉及到复杂的操作和智能。由于可能涉及到许多变量,平衡控制在自动化过程中提出了额外的挑战。这项工作提出了一个物理平衡杆,其中强化学习(RL)代理可以探索环境,通过加速度计感知其位置,并进行无线通信,最终自己学习如何在噪声干扰下保持杆平衡。智能体使用强化学习原理来探索和学习新的位置和修正,从而在极点平衡方面获得更重要的奖励。通过使用q矩阵,智能体探索未来的条件并获取使其保持稳定的策略信息。Arduino微控制器处理所有的训练和测试。在传感器、伺服电机、无线通信和人工智能的帮助下,组件合并成一个系统,在随机位置变化下始终恢复平衡。得到的结果证明,通过强化学习,即使在微控制器的限制下,智能体也可以自行学习使用通用传感器、执行器和解决平衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence-controlled pole balancing using an Arduino board
Automation Process (AP) is an important issue in the current digitized world and, in general, represents an increase in the quality of productivity when compared with manual control. Balance is a natural human capacity as it relates to complex operations and intelligence. Balance Control presents an extra challenge in automation processes, due to the many variables that may be involved.  This work presents a physical balancing pole where a Reinforcement Learning (RL) agent can explore the environment, sense its position through accelerometers, and wirelessly communicate and eventually learns by itself how to keep the pole balanced under noise disturbance. The agent uses RL principles to explore and learn new positions and corrections that lead toward more significant rewards in terms of pole equilibrium. By using a Q-matrix, the agent explores future conditions and acquires policy information that makes it possible to maintain stability. An Arduino microcontroller processes all training and testing. With the help of sensors, servo motors, wireless communications, and artificial intelligence, components merge into a system that consistently recovers equilibrium under random position changes. The obtained results prove that through RL, an agent can learn by itself to use generic sensors, actuators and solve balancing problems even under the limitations that a microcontroller presents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Global Climate: Much more complex than measuring Greenhouse Gases and Carbon Footprints Aprender enseñando: la educación intergeneracional a través del aprendizaje-servicio Enfoque multicriterio para la selección óptima de variables explicativas para modelos de pronóstico de la energía eléctrica de plantas solares fotovoltaicas Desarrollo de un modelo predictivo utilizando técnicas de aprendizaje supervisado para detectar la moniliasis en plantas de cacao de la Provincia de Orellana Interdisciplinariedad en la educación superior: conectando universidad y sociedad
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1