政府社交媒体内容特征及其对公民参与率的影响

Diah Henisa, Nori Wilantika
{"title":"政府社交媒体内容特征及其对公民参与率的影响","authors":"Diah Henisa, Nori Wilantika","doi":"10.1109/ICIMCIS53775.2021.9699299","DOIUrl":null,"url":null,"abstract":"Social media has been used by the government for communication, socialization, and publication. However, it is still not being used to its maximum potential. This study aims to analyze citizen engagement on a government agency's social media accounts based on the number of likes, comments, and shares. In addition, this study examines how citizen engagement differs depending on the topic, media type, and upload time of the post on government social media accounts. Data was collected from Facebook, Twitter, and Instagram using scraping tools, namely Facepager, Twint, and Instaloader. The types of post topics are determined based on the results of topic modeling using the Latent Dirichlet Allocation (LDA) method. Using the Kruskal-Wallis test and Dunn's test, the post topic, the media type, and the post time has a significant influence on citizen engagement. Instagram got the highest engagement rate compared to Facebook and Twitter.","PeriodicalId":250460,"journal":{"name":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Content Characteristics of Government Social Media and The Impact on Citizen Engagement Rate\",\"authors\":\"Diah Henisa, Nori Wilantika\",\"doi\":\"10.1109/ICIMCIS53775.2021.9699299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media has been used by the government for communication, socialization, and publication. However, it is still not being used to its maximum potential. This study aims to analyze citizen engagement on a government agency's social media accounts based on the number of likes, comments, and shares. In addition, this study examines how citizen engagement differs depending on the topic, media type, and upload time of the post on government social media accounts. Data was collected from Facebook, Twitter, and Instagram using scraping tools, namely Facepager, Twint, and Instaloader. The types of post topics are determined based on the results of topic modeling using the Latent Dirichlet Allocation (LDA) method. Using the Kruskal-Wallis test and Dunn's test, the post topic, the media type, and the post time has a significant influence on citizen engagement. Instagram got the highest engagement rate compared to Facebook and Twitter.\",\"PeriodicalId\":250460,\"journal\":{\"name\":\"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIMCIS53775.2021.9699299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMCIS53775.2021.9699299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社会媒体已被政府用于沟通、社会化和出版。然而,它仍然没有得到最大限度的利用。这项研究旨在分析一个政府机构的社交媒体账户上的公民参与,基于点赞、评论和分享的数量。此外,本研究还考察了公民参与如何根据主题、媒体类型和政府社交媒体账户上帖子的上传时间而有所不同。数据是从Facebook、Twitter和Instagram上收集的,使用的是抓取工具,即Facepager、Twint和Instaloader。利用潜在狄利克雷分配(Latent Dirichlet Allocation, LDA)方法进行主题建模,根据结果确定帖子主题的类型。通过Kruskal-Wallis检验和Dunn检验发现,发文主题、媒体类型和发文时间对公民参与有显著影响。与Facebook和Twitter相比,Instagram的参与率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content Characteristics of Government Social Media and The Impact on Citizen Engagement Rate
Social media has been used by the government for communication, socialization, and publication. However, it is still not being used to its maximum potential. This study aims to analyze citizen engagement on a government agency's social media accounts based on the number of likes, comments, and shares. In addition, this study examines how citizen engagement differs depending on the topic, media type, and upload time of the post on government social media accounts. Data was collected from Facebook, Twitter, and Instagram using scraping tools, namely Facepager, Twint, and Instaloader. The types of post topics are determined based on the results of topic modeling using the Latent Dirichlet Allocation (LDA) method. Using the Kruskal-Wallis test and Dunn's test, the post topic, the media type, and the post time has a significant influence on citizen engagement. Instagram got the highest engagement rate compared to Facebook and Twitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Word Expansion using Synonyms in Indonesian Short Essay Auto Scoring Sentiment Analysis of COVID-19 Vaccines from Indonesian Tweets and News Headlines using Various Machine Learning Techniques One Data ASN Framework (ODAF) for Indonesian State Civil Apparatus Sentiment Analysis of Big Cities on The Island of Java in Indonesia from Twitter Data as A Recommender System Effect Of The Learning Rate, Hidden Layer, And Epoch In Lung Cancer Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1