基于命名实体识别的社会网络提取在网络新闻文章政治偏见检测中的应用

K. Lin, C. Tsai
{"title":"基于命名实体识别的社会网络提取在网络新闻文章政治偏见检测中的应用","authors":"K. Lin, C. Tsai","doi":"10.1145/3430199.3430219","DOIUrl":null,"url":null,"abstract":"We aim to expand the application of social network extraction with NER tools, which to date is largely limited to fiction. With the premise that news articles resemble mini-stories, this study explores the extraction of social networks from online United States news articles to examine relationships between political bias and network features. We find statistical significance with most trends, and find no substantial differences between Liberal and Conservative bias, but bias and neutrality. Furthermore, this study identifies several issues with social network analysis, proposing a more rigorous examination of textual characteristics that affect network features.","PeriodicalId":371055,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Social Network Extraction With Named Entity Recognition to the Examination of Political Bias Within Online News Articles\",\"authors\":\"K. Lin, C. Tsai\",\"doi\":\"10.1145/3430199.3430219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to expand the application of social network extraction with NER tools, which to date is largely limited to fiction. With the premise that news articles resemble mini-stories, this study explores the extraction of social networks from online United States news articles to examine relationships between political bias and network features. We find statistical significance with most trends, and find no substantial differences between Liberal and Conservative bias, but bias and neutrality. Furthermore, this study identifies several issues with social network analysis, proposing a more rigorous examination of textual characteristics that affect network features.\",\"PeriodicalId\":371055,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3430199.3430219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3430199.3430219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的目标是用NER工具扩展社交网络提取的应用,到目前为止,这主要局限于小说。在新闻文章类似于小故事的前提下,本研究探讨了从美国在线新闻文章中提取社会网络,以检验政治偏见与网络特征之间的关系。我们发现大多数趋势具有统计学意义,并且发现自由党和保守党的偏见之间没有实质性差异,但偏见和中立之间存在差异。此外,本研究确定了社会网络分析的几个问题,提出了对影响网络特征的文本特征进行更严格的检查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Social Network Extraction With Named Entity Recognition to the Examination of Political Bias Within Online News Articles
We aim to expand the application of social network extraction with NER tools, which to date is largely limited to fiction. With the premise that news articles resemble mini-stories, this study explores the extraction of social networks from online United States news articles to examine relationships between political bias and network features. We find statistical significance with most trends, and find no substantial differences between Liberal and Conservative bias, but bias and neutrality. Furthermore, this study identifies several issues with social network analysis, proposing a more rigorous examination of textual characteristics that affect network features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Modeling of Riverbeds Based on NURBS Algorithm Multi-view Learning for 3D LGE-MRI Left Atrial Cavity Segmentation Detection of Key Structure of Auroral Images Based on Weakly Supervised Learning People Counting Based on Multi-scale Region Adaptive Segmentation and Depth Neural Network A Survey of Research on Image Data Sources Forensics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1