遗传算法在复调音乐转录中的应用

G. Reis, N. Fonseca, F. Ferndandez
{"title":"遗传算法在复调音乐转录中的应用","authors":"G. Reis, N. Fonseca, F. Ferndandez","doi":"10.1109/WISP.2007.4447608","DOIUrl":null,"url":null,"abstract":"Automatic music transcription (extracting musical notes from a polyphonic audio stream) is a very complex task that continues waiting for solutions, due to the harmonic complexity of musical sounds. Traditional approaches try to extract the information directly from the audio stream, but by taking into account that a polyphonic audio stream is no more than a combination of several notes, music transcription can be considered as a search problem where the goal is to find the sequence of the notes that best models our audio signal. By taking advantage of the genetic algorithms to explore a large search space we present a new approach to the music transcription problem. The results obtained show the feasibility of the approach.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Genetic Algorithm Approach to Polyphonic Music Transcription\",\"authors\":\"G. Reis, N. Fonseca, F. Ferndandez\",\"doi\":\"10.1109/WISP.2007.4447608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic music transcription (extracting musical notes from a polyphonic audio stream) is a very complex task that continues waiting for solutions, due to the harmonic complexity of musical sounds. Traditional approaches try to extract the information directly from the audio stream, but by taking into account that a polyphonic audio stream is no more than a combination of several notes, music transcription can be considered as a search problem where the goal is to find the sequence of the notes that best models our audio signal. By taking advantage of the genetic algorithms to explore a large search space we present a new approach to the music transcription problem. The results obtained show the feasibility of the approach.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"132 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

由于音乐声音的谐波复杂性,自动音乐转录(从复调音频流中提取音符)是一项非常复杂的任务,需要继续等待解决方案。传统方法试图直接从音频流中提取信息,但考虑到复调音频流只不过是几个音符的组合,音乐转录可以被视为一个搜索问题,其目标是找到最适合我们音频信号的音符序列。利用遗传算法探索大的搜索空间,提出了一种解决音乐抄写问题的新方法。计算结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Algorithm Approach to Polyphonic Music Transcription
Automatic music transcription (extracting musical notes from a polyphonic audio stream) is a very complex task that continues waiting for solutions, due to the harmonic complexity of musical sounds. Traditional approaches try to extract the information directly from the audio stream, but by taking into account that a polyphonic audio stream is no more than a combination of several notes, music transcription can be considered as a search problem where the goal is to find the sequence of the notes that best models our audio signal. By taking advantage of the genetic algorithms to explore a large search space we present a new approach to the music transcription problem. The results obtained show the feasibility of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1