3D打印法拉第反常色散光学滤光片外壳

Pengyuan Chang, Hangbo Shi, Jun Pan, Chunlai Li, G. Hu, Jin He, Jingbiao Chen
{"title":"3D打印法拉第反常色散光学滤光片外壳","authors":"Pengyuan Chang, Hangbo Shi, Jun Pan, Chunlai Li, G. Hu, Jin He, Jingbiao Chen","doi":"10.1117/12.2602015","DOIUrl":null,"url":null,"abstract":"Faraday anomalous dispersion optical filters (FADOFs) were used in laser frequency locking experiment as early as 1969, and later this laser was named Faraday laser. Typically, as the key element in the Faraday laser, the housing for the FADOF is machined from metal and insulation material. Here, we present an alternative to the commonly used option that utilizes 3D printing. We measure the inner magnetic field intensity of the housing for the FADOF and the transmission spectrum of our FADOF system, and show that it is sufficient for use in Faraday laser. Besides, we also characterize the performance of our Faraday laser system using atomic spectroscopy. The performance and cost of 3Dprinted FADOF housing make it an appealing option.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D printing a Faraday anomalous dispersion optical filter housing\",\"authors\":\"Pengyuan Chang, Hangbo Shi, Jun Pan, Chunlai Li, G. Hu, Jin He, Jingbiao Chen\",\"doi\":\"10.1117/12.2602015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Faraday anomalous dispersion optical filters (FADOFs) were used in laser frequency locking experiment as early as 1969, and later this laser was named Faraday laser. Typically, as the key element in the Faraday laser, the housing for the FADOF is machined from metal and insulation material. Here, we present an alternative to the commonly used option that utilizes 3D printing. We measure the inner magnetic field intensity of the housing for the FADOF and the transmission spectrum of our FADOF system, and show that it is sufficient for use in Faraday laser. Besides, we also characterize the performance of our Faraday laser system using atomic spectroscopy. The performance and cost of 3Dprinted FADOF housing make it an appealing option.\",\"PeriodicalId\":330466,\"journal\":{\"name\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2602015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2602015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

早在1969年,法拉第反常色散滤光片(FADOFs)就被用于激光锁频实验,后来这种激光器被命名为法拉第激光器。通常,作为法拉第激光器的关键元件,FADOF的外壳由金属和绝缘材料加工而成。在这里,我们提出了一种替代常用的选项,利用3D打印。我们测量了FADOF外壳的内磁场强度和FADOF系统的透射谱,表明它足以用于法拉第激光器。此外,我们还利用原子光谱学表征了我们的法拉第激光系统的性能。3d打印FADOF外壳的性能和成本使其成为一个有吸引力的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D printing a Faraday anomalous dispersion optical filter housing
Faraday anomalous dispersion optical filters (FADOFs) were used in laser frequency locking experiment as early as 1969, and later this laser was named Faraday laser. Typically, as the key element in the Faraday laser, the housing for the FADOF is machined from metal and insulation material. Here, we present an alternative to the commonly used option that utilizes 3D printing. We measure the inner magnetic field intensity of the housing for the FADOF and the transmission spectrum of our FADOF system, and show that it is sufficient for use in Faraday laser. Besides, we also characterize the performance of our Faraday laser system using atomic spectroscopy. The performance and cost of 3Dprinted FADOF housing make it an appealing option.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical digital-to-analog conversion based on weighted fiber coupler Influence of atmospheric turbulence on tracking performance of LIDAR and validation of vacuum experiment Novel four-step phase shifting algorithm based on the products of sines and cosines Femtosecond-laser-inscribed Fiber Bragg grating array for quasi-distributed high-temperature sensing Giant and tunable Goos-Hänchen shifts with a surface plasmon resonance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1