深度学习技术在入侵检测系统中的应用

Shideh Saraeian, Mahya Mohammadi Golchi
{"title":"深度学习技术在入侵检测系统中的应用","authors":"Shideh Saraeian, Mahya Mohammadi Golchi","doi":"10.1142/s1469026820500169","DOIUrl":null,"url":null,"abstract":"Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of Deep Learning Technique in an Intrusion Detection System\",\"authors\":\"Shideh Saraeian, Mahya Mohammadi Golchi\",\"doi\":\"10.1142/s1469026820500169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

计算机网络的全面发展导致分布式拒绝服务(DDoS)攻击的增加。这些类型的攻击可以很容易地限制通信和计算。在以往的研究中,攻击检测的准确性问题一直没有得到很好的解决。本文将深度学习技术应用于基于混合网络的入侵检测系统(IDS)中,对网络上的入侵进行检测。在NSL-KDD和ISCXIDS 2012数据集上对该技术的性能进行了评估。利用Wireshark工具进行流量可视化分析,并通过实验验证了该方法的优越性。结果表明,与其他有用的机器学习技术相比,我们提出的方法达到了更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Deep Learning Technique in an Intrusion Detection System
Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Images Segmentation Using a Deep Learning-Based Approach for Preoperative Projection of Human Organ Model Using Augmented Reality Technology Styling Classification of Group Photos Fusing Head and Pose Features Genetic Algorithm-Based Optimal Resource Trust Line Prediction in Cloud Computing Shearlet Transform-Based Novel Method for Multimodality Medical Image Fusion Using Deep Learning An Energy-Efficient Clustering and Fuzzy-Based Path Selection for Flying Ad-Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1