{"title":"深度学习技术在入侵检测系统中的应用","authors":"Shideh Saraeian, Mahya Mohammadi Golchi","doi":"10.1142/s1469026820500169","DOIUrl":null,"url":null,"abstract":"Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.","PeriodicalId":422521,"journal":{"name":"Int. J. Comput. Intell. Appl.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of Deep Learning Technique in an Intrusion Detection System\",\"authors\":\"Shideh Saraeian, Mahya Mohammadi Golchi\",\"doi\":\"10.1142/s1469026820500169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.\",\"PeriodicalId\":422521,\"journal\":{\"name\":\"Int. J. Comput. Intell. Appl.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Intell. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1469026820500169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Intell. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026820500169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Deep Learning Technique in an Intrusion Detection System
Comprehensive development of computer networks causes the increment of Distributed Denial of Service (DDoS) attacks. These types of attacks can easily restrict communication and computing. Among all the previous researches, the accuracy of the attack detection has not been properly addressed. In this study, deep learning technique is used in a hybrid network-based Intrusion Detection System (IDS) to detect intrusion on network. The performance of the proposed technique is evaluated on the NSL-KDD and ISCXIDS 2012 datasets. We performed traffic visual analysis using Wireshark tool and did some experimentations to prove the superiority of the proposed method. The results have shown that our proposed method achieved higher accuracy in comparison with other useful machine learning techniques.