医学调查匿名化案例研究

Michele Gentili, S. Hajian, Carlos Castillo
{"title":"医学调查匿名化案例研究","authors":"Michele Gentili, S. Hajian, Carlos Castillo","doi":"10.1145/3079452.3079490","DOIUrl":null,"url":null,"abstract":"Health data anonymization is a hot topic, on which both the medical and the computer science communities have made a great effort to provide a safer and trustful way of sharing data among research centers and hospitals.The main challenge in data anonymization is to provide a proper trade off between the utility of the resulting data/models and protecting individual privacy.In this paper we present a real anonymization case, with particular emphasis on choices that have to be made to carry it on, and difficulties experienced using a data set with many dimensions, and not well distinguishable features. We present our approach for evaluating disclosure risks and methods for anonymising high-dimensional medical survey data and measuring the utility of the transformed data.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Case Study of Anonymization of Medical Surveys\",\"authors\":\"Michele Gentili, S. Hajian, Carlos Castillo\",\"doi\":\"10.1145/3079452.3079490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Health data anonymization is a hot topic, on which both the medical and the computer science communities have made a great effort to provide a safer and trustful way of sharing data among research centers and hospitals.The main challenge in data anonymization is to provide a proper trade off between the utility of the resulting data/models and protecting individual privacy.In this paper we present a real anonymization case, with particular emphasis on choices that have to be made to carry it on, and difficulties experienced using a data set with many dimensions, and not well distinguishable features. We present our approach for evaluating disclosure risks and methods for anonymising high-dimensional medical survey data and measuring the utility of the transformed data.\",\"PeriodicalId\":245682,\"journal\":{\"name\":\"Proceedings of the 2017 International Conference on Digital Health\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 International Conference on Digital Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3079452.3079490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

健康数据匿名化是一个热门话题,医学界和计算机科学界都在努力为研究中心和医院之间提供一种更安全、更可信的数据共享方式。数据匿名化的主要挑战是在结果数据/模型的实用性和保护个人隐私之间提供适当的权衡。在本文中,我们提出了一个真实的匿名化案例,特别强调了必须做出的选择,以及使用具有许多维度的数据集所遇到的困难,并且不能很好地区分特征。我们提出了评估披露风险的方法,以及匿名化高维医学调查数据和测量转换后数据的效用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Case Study of Anonymization of Medical Surveys
Health data anonymization is a hot topic, on which both the medical and the computer science communities have made a great effort to provide a safer and trustful way of sharing data among research centers and hospitals.The main challenge in data anonymization is to provide a proper trade off between the utility of the resulting data/models and protecting individual privacy.In this paper we present a real anonymization case, with particular emphasis on choices that have to be made to carry it on, and difficulties experienced using a data set with many dimensions, and not well distinguishable features. We present our approach for evaluating disclosure risks and methods for anonymising high-dimensional medical survey data and measuring the utility of the transformed data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Gene-Disease Relations from Text to Support Biomarker Discovery Towards Health (Aware) Recommender Systems A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications FitBit Garden: A Mobile Game Designed to Increase Physical Activity in Children Health Misinformation in Search and Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1