{"title":"基于不同多响应优化技术的钛合金电火花加工表面粗糙度参数优化","authors":"A. Sahu, S. Mahapatra","doi":"10.4018/978-1-5225-6161-3.CH004","DOIUrl":null,"url":null,"abstract":"In this chapter, the EDM process is performed by taking titanium alloy as work piece and AlSiMg prepared by selective laser sintering (SLS) process as tool electrode along with copper and graphite. The EDM is performed by varying different process parameters like voltage (V), discharge current (Ip), duty cycle (τ), and pulse-on-time (Ton). The surface roughness parameters like Ra, Rt, and Rz are measured by the use of surface roughness measurement machine. To reduce the number of experiments, design of experiment (DOE) approach like Taguchi's L27 orthogonal array has been used. The surface properties of the EDM specimen are optimized by desirability function approach, TOPSIS and VIKOR method, and the best parametric setting is reported for the EDM process. All the optimization techniques convergence to the same optimal parametric setting. The type of tool is the most significant parameter followed by discharge current and voltage. Better surface finish of EDM specimen is produced with lower level of parametric setting along with the use of AlSiMg RP electrode during EDM.","PeriodicalId":443385,"journal":{"name":"Non-Conventional Machining in Modern Manufacturing Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Optimization of Surface Roughness Parameters by Different Multi-Response Optimization Techniques During Electro-Discharge Machining of Titanium Alloy\",\"authors\":\"A. Sahu, S. Mahapatra\",\"doi\":\"10.4018/978-1-5225-6161-3.CH004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the EDM process is performed by taking titanium alloy as work piece and AlSiMg prepared by selective laser sintering (SLS) process as tool electrode along with copper and graphite. The EDM is performed by varying different process parameters like voltage (V), discharge current (Ip), duty cycle (τ), and pulse-on-time (Ton). The surface roughness parameters like Ra, Rt, and Rz are measured by the use of surface roughness measurement machine. To reduce the number of experiments, design of experiment (DOE) approach like Taguchi's L27 orthogonal array has been used. The surface properties of the EDM specimen are optimized by desirability function approach, TOPSIS and VIKOR method, and the best parametric setting is reported for the EDM process. All the optimization techniques convergence to the same optimal parametric setting. The type of tool is the most significant parameter followed by discharge current and voltage. Better surface finish of EDM specimen is produced with lower level of parametric setting along with the use of AlSiMg RP electrode during EDM.\",\"PeriodicalId\":443385,\"journal\":{\"name\":\"Non-Conventional Machining in Modern Manufacturing Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Non-Conventional Machining in Modern Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-6161-3.CH004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Non-Conventional Machining in Modern Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-6161-3.CH004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of Surface Roughness Parameters by Different Multi-Response Optimization Techniques During Electro-Discharge Machining of Titanium Alloy
In this chapter, the EDM process is performed by taking titanium alloy as work piece and AlSiMg prepared by selective laser sintering (SLS) process as tool electrode along with copper and graphite. The EDM is performed by varying different process parameters like voltage (V), discharge current (Ip), duty cycle (τ), and pulse-on-time (Ton). The surface roughness parameters like Ra, Rt, and Rz are measured by the use of surface roughness measurement machine. To reduce the number of experiments, design of experiment (DOE) approach like Taguchi's L27 orthogonal array has been used. The surface properties of the EDM specimen are optimized by desirability function approach, TOPSIS and VIKOR method, and the best parametric setting is reported for the EDM process. All the optimization techniques convergence to the same optimal parametric setting. The type of tool is the most significant parameter followed by discharge current and voltage. Better surface finish of EDM specimen is produced with lower level of parametric setting along with the use of AlSiMg RP electrode during EDM.