{"title":"用图神经网络进行电路逆向工程的状态寄存器识别","authors":"Subhajit Dutta Chowdhury, Kaixin Yang, P. Nuzzo","doi":"10.1109/ICCAD51958.2021.9643498","DOIUrl":null,"url":null,"abstract":"Reverse engineering an integrated circuit netlist is a powerful tool to help detect malicious logic and counteract design piracy. A critical challenge in this domain is the correct classification of data-path and control-logic registers in a design. We present ReIGNN, a novel learning-based register classification methodology that combines graph neural networks (GNNs) with structural analysis to classify the registers in a circuit with high accuracy and generalize well across different designs. GNNs are particularly effective in processing circuit netlists in terms of graphs and leveraging properties of the nodes and their neighborhoods to learn to efficiently discriminate between different types of nodes. Structural analysis can further rectify any registers misclassified as state registers by the GNN by analyzing strongly connected components in the netlist graph. Numerical results on a set of benchmarks show that ReIGNN can achieve, on average, 96.5% balanced accuracy and 97.7% sensitivity across different designs.","PeriodicalId":370791,"journal":{"name":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"ReIGNN: State Register Identification Using Graph Neural Networks for Circuit Reverse Engineering\",\"authors\":\"Subhajit Dutta Chowdhury, Kaixin Yang, P. Nuzzo\",\"doi\":\"10.1109/ICCAD51958.2021.9643498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse engineering an integrated circuit netlist is a powerful tool to help detect malicious logic and counteract design piracy. A critical challenge in this domain is the correct classification of data-path and control-logic registers in a design. We present ReIGNN, a novel learning-based register classification methodology that combines graph neural networks (GNNs) with structural analysis to classify the registers in a circuit with high accuracy and generalize well across different designs. GNNs are particularly effective in processing circuit netlists in terms of graphs and leveraging properties of the nodes and their neighborhoods to learn to efficiently discriminate between different types of nodes. Structural analysis can further rectify any registers misclassified as state registers by the GNN by analyzing strongly connected components in the netlist graph. Numerical results on a set of benchmarks show that ReIGNN can achieve, on average, 96.5% balanced accuracy and 97.7% sensitivity across different designs.\",\"PeriodicalId\":370791,\"journal\":{\"name\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD51958.2021.9643498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD51958.2021.9643498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ReIGNN: State Register Identification Using Graph Neural Networks for Circuit Reverse Engineering
Reverse engineering an integrated circuit netlist is a powerful tool to help detect malicious logic and counteract design piracy. A critical challenge in this domain is the correct classification of data-path and control-logic registers in a design. We present ReIGNN, a novel learning-based register classification methodology that combines graph neural networks (GNNs) with structural analysis to classify the registers in a circuit with high accuracy and generalize well across different designs. GNNs are particularly effective in processing circuit netlists in terms of graphs and leveraging properties of the nodes and their neighborhoods to learn to efficiently discriminate between different types of nodes. Structural analysis can further rectify any registers misclassified as state registers by the GNN by analyzing strongly connected components in the netlist graph. Numerical results on a set of benchmarks show that ReIGNN can achieve, on average, 96.5% balanced accuracy and 97.7% sensitivity across different designs.