{"title":"广义高斯分布的高维点阵矢量量化器设计","authors":"L. H. Fonteles, M. Antonini","doi":"10.1109/ICIP.2007.4379985","DOIUrl":null,"url":null,"abstract":"LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High Dimension Lattice Vector Quantizer Design for Generalized Gaussian Distributions\",\"authors\":\"L. H. Fonteles, M. Antonini\",\"doi\":\"10.1109/ICIP.2007.4379985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Dimension Lattice Vector Quantizer Design for Generalized Gaussian Distributions
LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.