广义高斯分布的高维点阵矢量量化器设计

L. H. Fonteles, M. Antonini
{"title":"广义高斯分布的高维点阵矢量量化器设计","authors":"L. H. Fonteles, M. Antonini","doi":"10.1109/ICIP.2007.4379985","DOIUrl":null,"url":null,"abstract":"LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"High Dimension Lattice Vector Quantizer Design for Generalized Gaussian Distributions\",\"authors\":\"L. H. Fonteles, M. Antonini\",\"doi\":\"10.1109/ICIP.2007.4379985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

LVQ是一个简单但功能强大的矢量量化工具,可以看作是均匀标量量化的矢量推广。与VQ一样,LVQ能够考虑相邻像素之间的空间依赖关系,并利用n维空间填充增益。然而,晶格矢量量化器的设计并不简单,特别是当人们想要使用高维矢量时。事实上,使用高维涉及到具有大量人口的晶格码本,这使得索引变得困难。另一方面,在小波变换的框架下,必须以最优的方式进行子带间的位分配。使用VQ和缺乏非渐近失真率模型使得这类量化器的操作变得困难。本文主要研究了有效索引和最优位分配问题,并提出了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Dimension Lattice Vector Quantizer Design for Generalized Gaussian Distributions
LVQ is a simple but powerful tool for vector quantization and can be viewed as a vector generalization of uniform scalar quantization. Like VQ, LVQ is able to take into account spatial dependencies between adjacent pixels as well as to take advantage of the n-dimensional space filling gain. However, the design of a lattice vector quantizer is not trivial particularly when one wants to use vectors with high dimensions. Indeed, using high dimensions involves lattice codebooks with a huge population that makes indexing difficult. On the other hand, in the framework of wavelet transform, a bit allocation across the subbands must be done in an optimal way. The use of VQ and the lack of non asymptotical distortion-rate models for this kind of quantizers make this operation difficult. In this work we focus on the problem of efficient indexing and optimal bit allocation and propose efficient solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1