关于使用查询日志进行静态索引修剪

Hoang Thanh Lam, R. Perego, F. Silvestri
{"title":"关于使用查询日志进行静态索引修剪","authors":"Hoang Thanh Lam, R. Perego, F. Silvestri","doi":"10.1109/WI-IAT.2010.139","DOIUrl":null,"url":null,"abstract":"Static index pruning techniques aim at removing from the posting lists of an inverted file the references to documents which are likely to be not relevant for answering user queries. The reduction in the size of the index results in a better exploitation of memory hierarchies and faster query processing. On the other hand, pruning may affect the precision of the information retrieval system, since pruned entries are unavailable at query processing time. Static pruning techniques proposed so far exploit query-independent measures to evaluate the importance of a document within a posting list. This paper proposes a general framework that aims at enhancing the precision of any static pruning methods by exploiting usage information extracted from query logs. Experiments conducted on the TREC WT10g Web collection and a large Altavista query log show that integrating usage knowledge into the pruning process is profitable, and increases remarkably performance figures obtained with the state-of-the art Carmel's static pruning method.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On Using Query Logs for Static Index Pruning\",\"authors\":\"Hoang Thanh Lam, R. Perego, F. Silvestri\",\"doi\":\"10.1109/WI-IAT.2010.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static index pruning techniques aim at removing from the posting lists of an inverted file the references to documents which are likely to be not relevant for answering user queries. The reduction in the size of the index results in a better exploitation of memory hierarchies and faster query processing. On the other hand, pruning may affect the precision of the information retrieval system, since pruned entries are unavailable at query processing time. Static pruning techniques proposed so far exploit query-independent measures to evaluate the importance of a document within a posting list. This paper proposes a general framework that aims at enhancing the precision of any static pruning methods by exploiting usage information extracted from query logs. Experiments conducted on the TREC WT10g Web collection and a large Altavista query log show that integrating usage knowledge into the pruning process is profitable, and increases remarkably performance figures obtained with the state-of-the art Carmel's static pruning method.\",\"PeriodicalId\":340211,\"journal\":{\"name\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT.2010.139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

静态索引修剪技术旨在从倒排文件的张贴列表中删除对可能与回答用户查询无关的文档的引用。索引大小的减小可以更好地利用内存层次结构和更快地处理查询。另一方面,修剪可能会影响信息检索系统的精度,因为修剪后的条目在查询处理时不可用。目前提出的静态修剪技术利用与查询无关的度量来评估张贴列表中文档的重要性。本文提出了一个通用框架,旨在通过利用从查询日志中提取的使用信息来提高静态剪枝方法的精度。在TREC WT10g Web集合和大型Altavista查询日志上进行的实验表明,将使用知识集成到修剪过程中是有益的,并且显著提高了使用最先进的Carmel静态修剪方法获得的性能数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Using Query Logs for Static Index Pruning
Static index pruning techniques aim at removing from the posting lists of an inverted file the references to documents which are likely to be not relevant for answering user queries. The reduction in the size of the index results in a better exploitation of memory hierarchies and faster query processing. On the other hand, pruning may affect the precision of the information retrieval system, since pruned entries are unavailable at query processing time. Static pruning techniques proposed so far exploit query-independent measures to evaluate the importance of a document within a posting list. This paper proposes a general framework that aims at enhancing the precision of any static pruning methods by exploiting usage information extracted from query logs. Experiments conducted on the TREC WT10g Web collection and a large Altavista query log show that integrating usage knowledge into the pruning process is profitable, and increases remarkably performance figures obtained with the state-of-the art Carmel's static pruning method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory for Security: Lessons Learned from Deployed Applications A Decision Rule Method for Assessing the Completeness and Consistency of a Data Warehouse Semantic Structure Content for Dynamic Web Pages Enhancing the Performance of Metadata Service for Cloud Computing Improving Diversity of Focused Summaries through the Negative Endorsements of Redundant Facts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1