利用耦合鲁棒各向异性扩散滤波器的扩散张量场正则化

Songyuan Tang, Yong Fan, Hongtu Zhu, P. Yap, Wei Gao, Weili Lin, D. Shen
{"title":"利用耦合鲁棒各向异性扩散滤波器的扩散张量场正则化","authors":"Songyuan Tang, Yong Fan, Hongtu Zhu, P. Yap, Wei Gao, Weili Lin, D. Shen","doi":"10.1109/CVPRW.2009.5204342","DOIUrl":null,"url":null,"abstract":"This paper presents a method to simultaneously regularize diffusion weighted images and their estimated diffusion tensors, with the goal of suppressing noise and restoring tensor information. We enforce a data fidelity constraint, using coupled robust anisotropic diffusion filters, to ensure consistency of the restored diffusion tensors with the regularized diffusion weighted images. The filters are designed to take advantage of robust statistics and to be adopted to the anisotropic nature of diffusion tensors, which can effectively keep boundaries between piecewise constant regions in the tensor volume and also the diffusion weighted images during the regularized process. To facilitate Euclidean operations on the diffusion tensors, log-Euclidean metrics are adopted when performing the filtering. Experimental results on simulated and real image data demonstrate the effectiveness of the proposed method.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Regularization of diffusion tensor field using coupled robust anisotropic diffusion filters\",\"authors\":\"Songyuan Tang, Yong Fan, Hongtu Zhu, P. Yap, Wei Gao, Weili Lin, D. Shen\",\"doi\":\"10.1109/CVPRW.2009.5204342\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to simultaneously regularize diffusion weighted images and their estimated diffusion tensors, with the goal of suppressing noise and restoring tensor information. We enforce a data fidelity constraint, using coupled robust anisotropic diffusion filters, to ensure consistency of the restored diffusion tensors with the regularized diffusion weighted images. The filters are designed to take advantage of robust statistics and to be adopted to the anisotropic nature of diffusion tensors, which can effectively keep boundaries between piecewise constant regions in the tensor volume and also the diffusion weighted images during the regularized process. To facilitate Euclidean operations on the diffusion tensors, log-Euclidean metrics are adopted when performing the filtering. Experimental results on simulated and real image data demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种同时正则化扩散加权图像及其估计的扩散张量的方法,目的是抑制噪声和恢复张量信息。我们使用耦合鲁棒各向异性扩散滤波器强制数据保真度约束,以确保恢复的扩散张量与正则化扩散加权图像的一致性。该滤波器利用鲁棒统计特性,针对扩散张量的各向异性,在正则化过程中可以有效地保持张量体积中分段常数区域和扩散加权图像之间的边界。为了便于对扩散张量进行欧几里德运算,在进行滤波时采用对数欧几里德度量。仿真和真实图像数据的实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regularization of diffusion tensor field using coupled robust anisotropic diffusion filters
This paper presents a method to simultaneously regularize diffusion weighted images and their estimated diffusion tensors, with the goal of suppressing noise and restoring tensor information. We enforce a data fidelity constraint, using coupled robust anisotropic diffusion filters, to ensure consistency of the restored diffusion tensors with the regularized diffusion weighted images. The filters are designed to take advantage of robust statistics and to be adopted to the anisotropic nature of diffusion tensors, which can effectively keep boundaries between piecewise constant regions in the tensor volume and also the diffusion weighted images during the regularized process. To facilitate Euclidean operations on the diffusion tensors, log-Euclidean metrics are adopted when performing the filtering. Experimental results on simulated and real image data demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1