汽车底盘用再生高密度聚乙烯防腐涂料

Joshua T. Bachert, A. Rahman, M. Abu-Ayyad
{"title":"汽车底盘用再生高密度聚乙烯防腐涂料","authors":"Joshua T. Bachert, A. Rahman, M. Abu-Ayyad","doi":"10.1115/IMECE2018-86498","DOIUrl":null,"url":null,"abstract":"Both high corrosion costs and an over-abundance of plastic waste have significant global impacts. This research seeks to help in both areas by utilizing recycled plastic as an anticorrosive coating. Many plastic-based coatings, especially those developed in more recent years, already contain recycled content. This research, which utilizes 100% recycled high density polyethylene (HDPE) as a powder coat, will add to the increasingly sustainable catalog of anti-corrosive coatings. The HDPE was applied to mild steel samples with traditional electrostatic powder coating equipment. The coating thickness was measured using scanning electron microscope (SEM) characterized and was found to be roughly 116 μm. The SEM analysis did not reveal any porosity in the coating. The immersion corrosion test in 5% H2SO4 for 2–3 days showed corrosion products at the bottom of the beaker. The maximum corrosion obtained was 424.4 mills/year (mpy) after 70.45 hours of immersion and the minimum corrosion obtained was 0.0 mpy after 5.58 hours of immersion. The acid immersion tests indicated that the corrosion started from the edges and advanced towards the inner surfaces. The coating on the edges was not uniform and may be porous. The salt immersion test in 5% NaCl solution by mass showed the sign of corrosion products after 5.5 hours and increased with time. A few samples showed corrosion over 25% of the surface after 70.5 hours of immersion. This is again attributed to the fact that the edges were not coated completely. The corrosion resistance can be improved by avoiding the sharp edges on the part.","PeriodicalId":119074,"journal":{"name":"Volume 12: Materials: Genetics to Structures","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Anti-Corrosive Coating Using Recycled High Density Polyethylene for Automotive Chassis\",\"authors\":\"Joshua T. Bachert, A. Rahman, M. Abu-Ayyad\",\"doi\":\"10.1115/IMECE2018-86498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both high corrosion costs and an over-abundance of plastic waste have significant global impacts. This research seeks to help in both areas by utilizing recycled plastic as an anticorrosive coating. Many plastic-based coatings, especially those developed in more recent years, already contain recycled content. This research, which utilizes 100% recycled high density polyethylene (HDPE) as a powder coat, will add to the increasingly sustainable catalog of anti-corrosive coatings. The HDPE was applied to mild steel samples with traditional electrostatic powder coating equipment. The coating thickness was measured using scanning electron microscope (SEM) characterized and was found to be roughly 116 μm. The SEM analysis did not reveal any porosity in the coating. The immersion corrosion test in 5% H2SO4 for 2–3 days showed corrosion products at the bottom of the beaker. The maximum corrosion obtained was 424.4 mills/year (mpy) after 70.45 hours of immersion and the minimum corrosion obtained was 0.0 mpy after 5.58 hours of immersion. The acid immersion tests indicated that the corrosion started from the edges and advanced towards the inner surfaces. The coating on the edges was not uniform and may be porous. The salt immersion test in 5% NaCl solution by mass showed the sign of corrosion products after 5.5 hours and increased with time. A few samples showed corrosion over 25% of the surface after 70.5 hours of immersion. This is again attributed to the fact that the edges were not coated completely. The corrosion resistance can be improved by avoiding the sharp edges on the part.\",\"PeriodicalId\":119074,\"journal\":{\"name\":\"Volume 12: Materials: Genetics to Structures\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 12: Materials: Genetics to Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 12: Materials: Genetics to Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高昂的腐蚀成本和过量的塑料废物对全球产生了重大影响。这项研究试图通过利用再生塑料作为防腐涂层来帮助这两个领域。许多以塑料为基础的涂料,特别是近年来开发的涂料,已经含有可回收的成分。这项研究利用100%可回收的高密度聚乙烯(HDPE)作为粉末涂层,将为日益可持续的防腐涂料目录增添新的内容。采用传统的静电粉末涂布设备对低碳钢试样进行了高密度聚乙烯的涂布。采用扫描电镜(SEM)对涂层进行了表征,发现涂层厚度约为116 μm。扫描电镜分析未发现涂层中有任何孔隙。在5% H2SO4中浸泡2-3天,烧杯底部有腐蚀产物。浸泡70.45小时后获得的最大腐蚀为424.4米尔斯/年(mpy),浸泡5.58小时后获得的最小腐蚀为0.0英里/年。酸浸试验表明,腐蚀从边缘开始向内表面扩散。边缘的涂层不均匀,可能有多孔。在5%质量NaCl溶液中浸泡试验,在5.5 h后出现腐蚀产物的迹象,并随着时间的增加而增加。少数样品在浸泡70.5小时后,表面腐蚀超过25%。这再次归因于边缘没有完全涂覆的事实。通过避免零件上的尖锐边缘,可以提高耐腐蚀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anti-Corrosive Coating Using Recycled High Density Polyethylene for Automotive Chassis
Both high corrosion costs and an over-abundance of plastic waste have significant global impacts. This research seeks to help in both areas by utilizing recycled plastic as an anticorrosive coating. Many plastic-based coatings, especially those developed in more recent years, already contain recycled content. This research, which utilizes 100% recycled high density polyethylene (HDPE) as a powder coat, will add to the increasingly sustainable catalog of anti-corrosive coatings. The HDPE was applied to mild steel samples with traditional electrostatic powder coating equipment. The coating thickness was measured using scanning electron microscope (SEM) characterized and was found to be roughly 116 μm. The SEM analysis did not reveal any porosity in the coating. The immersion corrosion test in 5% H2SO4 for 2–3 days showed corrosion products at the bottom of the beaker. The maximum corrosion obtained was 424.4 mills/year (mpy) after 70.45 hours of immersion and the minimum corrosion obtained was 0.0 mpy after 5.58 hours of immersion. The acid immersion tests indicated that the corrosion started from the edges and advanced towards the inner surfaces. The coating on the edges was not uniform and may be porous. The salt immersion test in 5% NaCl solution by mass showed the sign of corrosion products after 5.5 hours and increased with time. A few samples showed corrosion over 25% of the surface after 70.5 hours of immersion. This is again attributed to the fact that the edges were not coated completely. The corrosion resistance can be improved by avoiding the sharp edges on the part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigations on the Structure and Properties of the Hot Extruded AA2014-Nano SiCp Composite Advanced Recycled Materials for Economic Production of Fire Resistant Fabrics Simulation of Liquid Crystal Polymer Directionality During Cast Film Extrusion Effect of Constrained Groove Pressing on Mechanical Properties of Nitinol Alloy Fatigue Crack Growth Rate Studies on Stainless Steel Welds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1