使用穿戴式麦克风和加速度计检测小组任务中的物理协作

Jamie A. Ward, Gerald Pirkl, Peter Hevesi, P. Lukowicz
{"title":"使用穿戴式麦克风和加速度计检测小组任务中的物理协作","authors":"Jamie A. Ward, Gerald Pirkl, Peter Hevesi, P. Lukowicz","doi":"10.1109/PERCOMW.2017.7917570","DOIUrl":null,"url":null,"abstract":"This paper presents a method of using wearable accelerometers and microphones to detect instances of ad-hoc physical collaborations between members of a group. 4 people are instructed to construct a large video wall and must cooperate to complete the task. The task is loosely structured with minimal outside assistance to better reflect the ad-hoc nature of many real world construction scenarios. Audio data, recorded from chest-worn microphones, is used to reveal information on collocation, i.e. whether or not participants are near one another. Movement data, recorded using 3-axis accelerometers worn on each person's head and wrists, is used to provide information on correlated movements, such as when participants help one another to lift a heavy object. Collocation and correlated movement information is then combined to determine who is working together at any given time. The work shows how data from commonly available sensors can be combined across multiple people using a simple, low power algorithm to detect a range of physical collaborations.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Detecting physical collaborations in a group task using body-worn microphones and accelerometers\",\"authors\":\"Jamie A. Ward, Gerald Pirkl, Peter Hevesi, P. Lukowicz\",\"doi\":\"10.1109/PERCOMW.2017.7917570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of using wearable accelerometers and microphones to detect instances of ad-hoc physical collaborations between members of a group. 4 people are instructed to construct a large video wall and must cooperate to complete the task. The task is loosely structured with minimal outside assistance to better reflect the ad-hoc nature of many real world construction scenarios. Audio data, recorded from chest-worn microphones, is used to reveal information on collocation, i.e. whether or not participants are near one another. Movement data, recorded using 3-axis accelerometers worn on each person's head and wrists, is used to provide information on correlated movements, such as when participants help one another to lift a heavy object. Collocation and correlated movement information is then combined to determine who is working together at any given time. The work shows how data from commonly available sensors can be combined across multiple people using a simple, low power algorithm to detect a range of physical collaborations.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种使用可穿戴加速度计和麦克风来检测群体成员之间临时物理协作实例的方法。4个人被要求建造一个巨大的视频墙,必须合作完成任务。该任务结构松散,外部帮助最少,以更好地反映许多真实世界构建场景的临时性质。从佩戴在胸前的麦克风中记录的音频数据用于揭示搭配信息,即参与者是否彼此靠近。运动数据由佩戴在每个人头上和手腕上的3轴加速度计记录,用于提供相关运动的信息,例如参与者何时互相帮助举起重物。然后将搭配和相关的运动信息结合起来,以确定在任何给定时间谁在一起工作。这项工作展示了如何使用一种简单、低功耗的算法将来自常用传感器的数据在多人之间组合起来,以检测一系列物理协作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting physical collaborations in a group task using body-worn microphones and accelerometers
This paper presents a method of using wearable accelerometers and microphones to detect instances of ad-hoc physical collaborations between members of a group. 4 people are instructed to construct a large video wall and must cooperate to complete the task. The task is loosely structured with minimal outside assistance to better reflect the ad-hoc nature of many real world construction scenarios. Audio data, recorded from chest-worn microphones, is used to reveal information on collocation, i.e. whether or not participants are near one another. Movement data, recorded using 3-axis accelerometers worn on each person's head and wrists, is used to provide information on correlated movements, such as when participants help one another to lift a heavy object. Collocation and correlated movement information is then combined to determine who is working together at any given time. The work shows how data from commonly available sensors can be combined across multiple people using a simple, low power algorithm to detect a range of physical collaborations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity to web hosting in a mobile field survey NFC based dataset annotation within a behavioral alerting platform An aggregation and visualization technique for crowd-sourced continuous monitoring of transport infrastructures Trainwear: A real-time assisted training feedback system with fabric wearable sensors Toward real-time in-home activity recognition using indoor positioning sensor and power meters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1