微服务配置及其对云原生环境性能的影响

Mohamed-Anis Mekki, Nassima Toumi, A. Ksentini
{"title":"微服务配置及其对云原生环境性能的影响","authors":"Mohamed-Anis Mekki, Nassima Toumi, A. Ksentini","doi":"10.1109/LCN53696.2022.9843385","DOIUrl":null,"url":null,"abstract":"Cloud-native rethinks the application architecture by embracing a micro-service approach, where each microservice is packaged into containers to run in a centralized or an edge cloud. When deploying the container running the micro-service, the tenant has to specify the amount of CPU and memory limit to run their workload. However, it is not straightforward for a tenant to know in advance the computing amount that allows running the microservice optimally. This will impact the service performances and the infrastructure provider, particularly if the resource overprovisioning approach is used. To overcome this issue, we conduct in this paper an experimental study aiming to detect if a tenant’s configuration allows running its service optimally. We run several experiments on a cloud-native platform, using different types of applications under different resource configurations. The obtained results provide insights on how to detect and correct performance degradation due to misconfiguration of the service resource.","PeriodicalId":303965,"journal":{"name":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Microservices Configurations and the Impact on the Performance in Cloud Native Environments\",\"authors\":\"Mohamed-Anis Mekki, Nassima Toumi, A. Ksentini\",\"doi\":\"10.1109/LCN53696.2022.9843385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud-native rethinks the application architecture by embracing a micro-service approach, where each microservice is packaged into containers to run in a centralized or an edge cloud. When deploying the container running the micro-service, the tenant has to specify the amount of CPU and memory limit to run their workload. However, it is not straightforward for a tenant to know in advance the computing amount that allows running the microservice optimally. This will impact the service performances and the infrastructure provider, particularly if the resource overprovisioning approach is used. To overcome this issue, we conduct in this paper an experimental study aiming to detect if a tenant’s configuration allows running its service optimally. We run several experiments on a cloud-native platform, using different types of applications under different resource configurations. The obtained results provide insights on how to detect and correct performance degradation due to misconfiguration of the service resource.\",\"PeriodicalId\":303965,\"journal\":{\"name\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 47th Conference on Local Computer Networks (LCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LCN53696.2022.9843385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 47th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN53696.2022.9843385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

云原生通过采用微服务方法重新考虑了应用程序架构,其中每个微服务被打包到容器中,以便在集中式云中或边缘云中运行。在部署运行微服务的容器时,租户必须指定运行其工作负载所需的CPU数量和内存限制。然而,对于租户来说,提前知道允许以最佳方式运行微服务的计算量并不简单。这将影响服务性能和基础设施提供者,特别是在使用资源过度供应方法的情况下。为了克服这个问题,我们在本文中进行了一项实验研究,旨在检测租户的配置是否允许以最佳方式运行其服务。我们在云原生平台上运行了几个实验,在不同的资源配置下使用不同类型的应用程序。获得的结果提供了关于如何检测和纠正由于服务资源配置错误而导致的性能下降的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microservices Configurations and the Impact on the Performance in Cloud Native Environments
Cloud-native rethinks the application architecture by embracing a micro-service approach, where each microservice is packaged into containers to run in a centralized or an edge cloud. When deploying the container running the micro-service, the tenant has to specify the amount of CPU and memory limit to run their workload. However, it is not straightforward for a tenant to know in advance the computing amount that allows running the microservice optimally. This will impact the service performances and the infrastructure provider, particularly if the resource overprovisioning approach is used. To overcome this issue, we conduct in this paper an experimental study aiming to detect if a tenant’s configuration allows running its service optimally. We run several experiments on a cloud-native platform, using different types of applications under different resource configurations. The obtained results provide insights on how to detect and correct performance degradation due to misconfiguration of the service resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MicroTL: Transfer Learning on Low-Power IoT Devices Service-Based Identification of Highly Coupled Mobile Applications Raising the AWAREness of BFT Protocols for Soaring Network Delays How to build socio-organizational information from remote IP addresses to enrich security analysis? ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1