稳态偏置卡尔曼滤波器的降阶分解

D. Popescu, Z. Gajic
{"title":"稳态偏置卡尔曼滤波器的降阶分解","authors":"D. Popescu, Z. Gajic","doi":"10.1109/CCECE.1998.682539","DOIUrl":null,"url":null,"abstract":"The problem of estimating the state x of a linear system in the presence of a constant, but unknown bias vector b is considered. Applying results derived for optimal filtering of singularly perturbed systems, the reduced order filters for state and bias are obtained. The presented approach completely decouples state and bias filters, both of them being driven by the systems measurements, thus allowing parallel computations.","PeriodicalId":177613,"journal":{"name":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduced order decomposition for steady state biased Kalman filters\",\"authors\":\"D. Popescu, Z. Gajic\",\"doi\":\"10.1109/CCECE.1998.682539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of estimating the state x of a linear system in the presence of a constant, but unknown bias vector b is considered. Applying results derived for optimal filtering of singularly perturbed systems, the reduced order filters for state and bias are obtained. The presented approach completely decouples state and bias filters, both of them being driven by the systems measurements, thus allowing parallel computations.\",\"PeriodicalId\":177613,\"journal\":{\"name\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCECE.1998.682539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.98TH8341)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE.1998.682539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了存在一个常数但未知的偏置向量b时线性系统状态x的估计问题。应用奇异摄动系统最优滤波的结果,得到了状态和偏置的降阶滤波器。所提出的方法完全解耦状态滤波器和偏置滤波器,它们都由系统测量驱动,从而允许并行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced order decomposition for steady state biased Kalman filters
The problem of estimating the state x of a linear system in the presence of a constant, but unknown bias vector b is considered. Applying results derived for optimal filtering of singularly perturbed systems, the reduced order filters for state and bias are obtained. The presented approach completely decouples state and bias filters, both of them being driven by the systems measurements, thus allowing parallel computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The use of ISDN signaling for real-time applications at homes and small businesses Multifractal analysis of DNA Multimedia courseware delivery over the Internet The VideoWriter: towards active paper for a natural user interface A performance based analysis of a robust flux controller for an induction motor drive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1