随机转录组轨迹(DIST2)的动态询问

E. Torres, Simon T. Schafer, F. Gage, T. Sejnowski
{"title":"随机转录组轨迹(DIST2)的动态询问","authors":"E. Torres, Simon T. Schafer, F. Gage, T. Sejnowski","doi":"10.1109/ITA50056.2020.9245011","DOIUrl":null,"url":null,"abstract":"New methods in genomics allow the tracking of single cell transcriptome across tens of thousands of genes for hundreds of cells dynamically changing over time. These advancements open new computational problems and provide opportunity to explore new solutions to the interrogation of the transcriptome data in humans and in animal models. Common data analysis pipelines include a dimensionality reduction step to facilitate visualizing the data in two or three dimensions, (e.g. using t-distributed stochastic neighbor embedding (t-SNE)). Such methods reveal structure in high-dimensional data, while aiming at accurately representing global structure of the data. A potential pitfall of some methods is gross data loss when constraining the analyses to gene space data that is not asynchronously changing from day to day, or that express more stable variability of some genes relative to other genes.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Interrogation of Stochastic Transcriptome Trajectories (DIST2)\",\"authors\":\"E. Torres, Simon T. Schafer, F. Gage, T. Sejnowski\",\"doi\":\"10.1109/ITA50056.2020.9245011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New methods in genomics allow the tracking of single cell transcriptome across tens of thousands of genes for hundreds of cells dynamically changing over time. These advancements open new computational problems and provide opportunity to explore new solutions to the interrogation of the transcriptome data in humans and in animal models. Common data analysis pipelines include a dimensionality reduction step to facilitate visualizing the data in two or three dimensions, (e.g. using t-distributed stochastic neighbor embedding (t-SNE)). Such methods reveal structure in high-dimensional data, while aiming at accurately representing global structure of the data. A potential pitfall of some methods is gross data loss when constraining the analyses to gene space data that is not asynchronously changing from day to day, or that express more stable variability of some genes relative to other genes.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9245011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9245011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基因组学的新方法允许跟踪单细胞转录组,跨越数万个基因,数百个细胞随时间动态变化。这些进步带来了新的计算问题,并为探索人类和动物模型中转录组数据的新解决方案提供了机会。常见的数据分析管道包括一个降维步骤,以方便在二维或三维中可视化数据(例如使用t分布随机邻居嵌入(t-SNE))。这种方法在揭示高维数据结构的同时,力求准确地表示数据的全局结构。一些方法的一个潜在陷阱是,当将分析限制在每天不是异步变化的基因空间数据时,或者表达某些基因相对于其他基因的更稳定的可变性时,可能会丢失大量数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Interrogation of Stochastic Transcriptome Trajectories (DIST2)
New methods in genomics allow the tracking of single cell transcriptome across tens of thousands of genes for hundreds of cells dynamically changing over time. These advancements open new computational problems and provide opportunity to explore new solutions to the interrogation of the transcriptome data in humans and in animal models. Common data analysis pipelines include a dimensionality reduction step to facilitate visualizing the data in two or three dimensions, (e.g. using t-distributed stochastic neighbor embedding (t-SNE)). Such methods reveal structure in high-dimensional data, while aiming at accurately representing global structure of the data. A potential pitfall of some methods is gross data loss when constraining the analyses to gene space data that is not asynchronously changing from day to day, or that express more stable variability of some genes relative to other genes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massive MIMO is Very Useful for Pilot-Free Uplink Communications Simplified Ray Tracing for the Millimeter Wave Channel: A Performance Evaluation On Marton's Achievable Region: Local Tensorization for Product Channels with a Binary Component Improve Robustness of Deep Neural Networks by Coding On Nonnegative CP Tensor Decomposition Robustness to Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1