挖掘微博秘方

Shengyu Liu, Qingcai Chen, Shanshan Guan, Xiaolong Wang, Huimiao Shi
{"title":"挖掘微博秘方","authors":"Shengyu Liu, Qingcai Chen, Shanshan Guan, Xiaolong Wang, Huimiao Shi","doi":"10.1109/IALP.2013.13","DOIUrl":null,"url":null,"abstract":"Microblog, as an online communication platform, is becoming more and more popular. Users generate volumes of data everyday and the user generated content contains a lot of useful knowledge such as practical skills and technical expertise. This paper proposes a cross-data method to mine recipes in Microblog. In the proposed method, snippets of text relevant to recipes are firstly extracted from Baidu Encyclopedia. Secondly, the extracted snippets of text are used to train a domain-specific unigram language model. Thirdly, candidate recipes in Microblog are mined based on the unigram language model. Finally, some heuristic rules are used to identify real recipes from the candidate recipes. Experimental results show the effectiveness of the proposed method.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Mining Recipes in Microblog\",\"authors\":\"Shengyu Liu, Qingcai Chen, Shanshan Guan, Xiaolong Wang, Huimiao Shi\",\"doi\":\"10.1109/IALP.2013.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microblog, as an online communication platform, is becoming more and more popular. Users generate volumes of data everyday and the user generated content contains a lot of useful knowledge such as practical skills and technical expertise. This paper proposes a cross-data method to mine recipes in Microblog. In the proposed method, snippets of text relevant to recipes are firstly extracted from Baidu Encyclopedia. Secondly, the extracted snippets of text are used to train a domain-specific unigram language model. Thirdly, candidate recipes in Microblog are mined based on the unigram language model. Finally, some heuristic rules are used to identify real recipes from the candidate recipes. Experimental results show the effectiveness of the proposed method.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微博作为一种在线交流平台,正变得越来越受欢迎。用户每天生成大量的数据,用户生成的内容包含许多有用的知识,如实用技能和技术专长。提出了一种跨数据挖掘微博菜谱的方法。该方法首先从百度百科中提取食谱相关的文本片段。其次,将提取的文本片段用于训练特定领域的一元语言模型。第三,基于一元语言模型挖掘微博候选菜谱。最后,利用启发式规则从候选菜谱中识别出真实菜谱。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Recipes in Microblog
Microblog, as an online communication platform, is becoming more and more popular. Users generate volumes of data everyday and the user generated content contains a lot of useful knowledge such as practical skills and technical expertise. This paper proposes a cross-data method to mine recipes in Microblog. In the proposed method, snippets of text relevant to recipes are firstly extracted from Baidu Encyclopedia. Secondly, the extracted snippets of text are used to train a domain-specific unigram language model. Thirdly, candidate recipes in Microblog are mined based on the unigram language model. Finally, some heuristic rules are used to identify real recipes from the candidate recipes. Experimental results show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1