磁共振图像最大似然估计的最大化-最小化算法

Qianyi Jiang, S. Moussaoui, J. Idier, G. Collewet, Mai Xu
{"title":"磁共振图像最大似然估计的最大化-最小化算法","authors":"Qianyi Jiang, S. Moussaoui, J. Idier, G. Collewet, Mai Xu","doi":"10.1109/IPTA.2017.8310150","DOIUrl":null,"url":null,"abstract":"This paper addresses maximum likelihood estimation of images corrupted by a Rician noise, with the aim to propose an efficient optimization method. The application example is the restoration of magnetic resonance images. Starting from the fact that the criterion to minimize is non-convex but unimodal, the main contribution of this work is to propose an optimization scheme based on the majorization-minimization framework after introducing a variable change allowing to get a strictly convex criterion. The resulting descent algorithm is compared to the classical MM descent algorithm and its performances are assessed using synthetic and real MR images. Finally, by combining these two MM algorithms, two optimization strategies are proposed to improve the numerical efficiency of the image restoration for any signal-to-noise ratio.","PeriodicalId":316356,"journal":{"name":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Majorization-minimization algorithms for maximum likelihood estimation of magnetic resonance images\",\"authors\":\"Qianyi Jiang, S. Moussaoui, J. Idier, G. Collewet, Mai Xu\",\"doi\":\"10.1109/IPTA.2017.8310150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses maximum likelihood estimation of images corrupted by a Rician noise, with the aim to propose an efficient optimization method. The application example is the restoration of magnetic resonance images. Starting from the fact that the criterion to minimize is non-convex but unimodal, the main contribution of this work is to propose an optimization scheme based on the majorization-minimization framework after introducing a variable change allowing to get a strictly convex criterion. The resulting descent algorithm is compared to the classical MM descent algorithm and its performances are assessed using synthetic and real MR images. Finally, by combining these two MM algorithms, two optimization strategies are proposed to improve the numerical efficiency of the image restoration for any signal-to-noise ratio.\",\"PeriodicalId\":316356,\"journal\":{\"name\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2017.8310150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2017.8310150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了被噪声破坏的图像的极大似然估计问题,旨在提出一种有效的优化方法。应用实例是磁共振图像的恢复。从最小化准则是非凸单峰的事实出发,本工作的主要贡献是在引入变量变化后,提出了一种基于最大化-最小化框架的优化方案,从而得到严格的凸准则。将所得到的下降算法与经典的MM下降算法进行了比较,并使用合成和真实MR图像对其性能进行了评估。最后,结合这两种MM算法,提出了两种优化策略,以提高任意信噪比下图像恢复的数值效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Majorization-minimization algorithms for maximum likelihood estimation of magnetic resonance images
This paper addresses maximum likelihood estimation of images corrupted by a Rician noise, with the aim to propose an efficient optimization method. The application example is the restoration of magnetic resonance images. Starting from the fact that the criterion to minimize is non-convex but unimodal, the main contribution of this work is to propose an optimization scheme based on the majorization-minimization framework after introducing a variable change allowing to get a strictly convex criterion. The resulting descent algorithm is compared to the classical MM descent algorithm and its performances are assessed using synthetic and real MR images. Finally, by combining these two MM algorithms, two optimization strategies are proposed to improve the numerical efficiency of the image restoration for any signal-to-noise ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated quantification of retinal vessel morphometry in the UK biobank cohort Deep learning for automatic sale receipt understanding Illumination-robust multispectral demosaicing Completed local structure patterns on three orthogonal planes for dynamic texture recognition Single object tracking using offline trained deep regression networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1