用延时荧光显微镜图像定量分析小鼠胚胎干细胞细胞核分化活性的三维分割

Yuan-Hsiang Chang, H. Yokota, K. Abe, Ming-Dar Tsai
{"title":"用延时荧光显微镜图像定量分析小鼠胚胎干细胞细胞核分化活性的三维分割","authors":"Yuan-Hsiang Chang, H. Yokota, K. Abe, Ming-Dar Tsai","doi":"10.1109/BIBE.2018.00065","DOIUrl":null,"url":null,"abstract":"This paper proposes an accurate 3D segmentation method for visualization and quantitative analysis of differentiation activities of mouse embryonic stem (ES) cells using time-lapse confocal fluorescence microscopy images. One of critical tasks in ES cell segmentation arises due to that ES cell nuclei are often close to each other. Several segmentation methods by convexities and concavities on cell or nucleus contours to detect possible touching cells or nuclei were proposed. Comparing to image processing methods, these methods are more accurate in some conditions, however, still cannot detect touching nuclei without concavities on nucleus contours. Our method uses the nucleus size and convex, concave, strait and extrusion features on nucleus contour to touch a boundary between touching cell nuclei in 2D slices and interslices. Experimental results show our method can well detect touching boundaries of 2D and 3D nucleus for confocal microscopy images of mouse ES cells in an early stage of differentiating into neural progenitor cells. Based on the accurate ES cell segmentation, cell activities (velocities and shape changes) during differentiation can be accurately visualized and quantitatively analyzed.","PeriodicalId":127507,"journal":{"name":"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Regular Paper] Three-Dimensional Segmentation of Mouse Embryonic Stem Cell Nuclei for Quantitative Analysis of Differentiation Activity Using Time-Lapse Fluorescence Microscopy Images\",\"authors\":\"Yuan-Hsiang Chang, H. Yokota, K. Abe, Ming-Dar Tsai\",\"doi\":\"10.1109/BIBE.2018.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an accurate 3D segmentation method for visualization and quantitative analysis of differentiation activities of mouse embryonic stem (ES) cells using time-lapse confocal fluorescence microscopy images. One of critical tasks in ES cell segmentation arises due to that ES cell nuclei are often close to each other. Several segmentation methods by convexities and concavities on cell or nucleus contours to detect possible touching cells or nuclei were proposed. Comparing to image processing methods, these methods are more accurate in some conditions, however, still cannot detect touching nuclei without concavities on nucleus contours. Our method uses the nucleus size and convex, concave, strait and extrusion features on nucleus contour to touch a boundary between touching cell nuclei in 2D slices and interslices. Experimental results show our method can well detect touching boundaries of 2D and 3D nucleus for confocal microscopy images of mouse ES cells in an early stage of differentiating into neural progenitor cells. Based on the accurate ES cell segmentation, cell activities (velocities and shape changes) during differentiation can be accurately visualized and quantitatively analyzed.\",\"PeriodicalId\":127507,\"journal\":{\"name\":\"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2018.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2018.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种精确的三维分割方法,用于利用延时共聚焦荧光显微镜图像可视化和定量分析小鼠胚胎干细胞(ES)分化活动。胚胎干细胞分裂的一个关键任务是由于胚胎干细胞的细胞核往往彼此靠近。提出了几种利用细胞或细胞核轮廓上的凸点和凹点分割的方法来检测可能的接触细胞或细胞核。与图像处理方法相比,这些方法在某些情况下精度更高,但仍然无法检测到核轮廓上没有凹陷的触摸核。我们的方法利用细胞核的大小和细胞核轮廓上的凸、凹、窄、挤特征,在二维切片和片间触摸细胞核之间的边界。实验结果表明,该方法可以很好地检测到分化为神经祖细胞早期的小鼠胚胎干细胞共聚焦显微镜图像的二维和三维核接触边界。基于精确的ES细胞分割,可以准确地可视化和定量分析分化过程中的细胞活动(速度和形状变化)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Regular Paper] Three-Dimensional Segmentation of Mouse Embryonic Stem Cell Nuclei for Quantitative Analysis of Differentiation Activity Using Time-Lapse Fluorescence Microscopy Images
This paper proposes an accurate 3D segmentation method for visualization and quantitative analysis of differentiation activities of mouse embryonic stem (ES) cells using time-lapse confocal fluorescence microscopy images. One of critical tasks in ES cell segmentation arises due to that ES cell nuclei are often close to each other. Several segmentation methods by convexities and concavities on cell or nucleus contours to detect possible touching cells or nuclei were proposed. Comparing to image processing methods, these methods are more accurate in some conditions, however, still cannot detect touching nuclei without concavities on nucleus contours. Our method uses the nucleus size and convex, concave, strait and extrusion features on nucleus contour to touch a boundary between touching cell nuclei in 2D slices and interslices. Experimental results show our method can well detect touching boundaries of 2D and 3D nucleus for confocal microscopy images of mouse ES cells in an early stage of differentiating into neural progenitor cells. Based on the accurate ES cell segmentation, cell activities (velocities and shape changes) during differentiation can be accurately visualized and quantitatively analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear CMOS Image Sensor with SOC Integrated Local Contrast Stretch for Bio-Microfluidic Imaging [Regular Paper] Recovering a Chemotopic Feature Space from a Group of Fruit Fly Antenna Chemosensors A Systems Biology Approach to Model Gene-Gene Interaction for Childhood Sarcomas Finite Element Modelling for the Detection of Breast Tumor [Regular Paper] Implementation of an Ultrasound Platform for Proposed Photoacoustic Image Reconstruction Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1