S. Barella, A. Gruttadauria, Riccardo Gerosa, Giacomo Mainetti, Teodoro Mainetti
{"title":"6xxx铝合金在线等温挤压预测工具","authors":"S. Barella, A. Gruttadauria, Riccardo Gerosa, Giacomo Mainetti, Teodoro Mainetti","doi":"10.3390/IEC2M-09239","DOIUrl":null,"url":null,"abstract":": During the last fifty years, the metal forming of aluminum alloys advanced significantly, leading to a more competitive market on which production rate and overall quality are kept as high as possible. Within the aluminum industries, extrusion plays an important role, since many industrial products with structural or even aesthetic functions are realized with this technology. Especially in the automotive industry, the use of aluminum alloys is growing very fast, since it permits a considerable weight loss and thus a reduction of the emission. Nevertheless, the stringent quality standards required don’t allow the use of extruded aluminum alloys produced for common build-ing applications. An important parameter that can be used as an index of the quality of the extruded product is the emergent temperature: if the temperature at the exit of the press is kept constant within a certain limit, products with homogeneous properties and high-quality surface are obtained and the so called “isothermal extrusion” is achieved. As extrusion industries are spread all over the world with different levels of automation and control, a universal but simple on-line tool for deter-mining the best process condition to achieve isothermal extrusion is of particular interest. The aim of this work is to implement this model, which allows evaluation of the thermal gradient which has to be imposed on the billet. Several experiments have been carried out on an industrial extrusion press, and the outer temperature was recorded and compared with the simulated one to demon-strate the model consistency.","PeriodicalId":429720,"journal":{"name":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PREDICTIVE TOOLS FOR IN-LINE ISOTHERMAL EXTRUSION OF 6XXX ALUMINUM ALLOYS\",\"authors\":\"S. Barella, A. Gruttadauria, Riccardo Gerosa, Giacomo Mainetti, Teodoro Mainetti\",\"doi\":\"10.3390/IEC2M-09239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": During the last fifty years, the metal forming of aluminum alloys advanced significantly, leading to a more competitive market on which production rate and overall quality are kept as high as possible. Within the aluminum industries, extrusion plays an important role, since many industrial products with structural or even aesthetic functions are realized with this technology. Especially in the automotive industry, the use of aluminum alloys is growing very fast, since it permits a considerable weight loss and thus a reduction of the emission. Nevertheless, the stringent quality standards required don’t allow the use of extruded aluminum alloys produced for common build-ing applications. An important parameter that can be used as an index of the quality of the extruded product is the emergent temperature: if the temperature at the exit of the press is kept constant within a certain limit, products with homogeneous properties and high-quality surface are obtained and the so called “isothermal extrusion” is achieved. As extrusion industries are spread all over the world with different levels of automation and control, a universal but simple on-line tool for deter-mining the best process condition to achieve isothermal extrusion is of particular interest. The aim of this work is to implement this model, which allows evaluation of the thermal gradient which has to be imposed on the billet. Several experiments have been carried out on an industrial extrusion press, and the outer temperature was recorded and compared with the simulated one to demon-strate the model consistency.\",\"PeriodicalId\":429720,\"journal\":{\"name\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/IEC2M-09239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 1st International Electronic Conference on Metallurgy and Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/IEC2M-09239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PREDICTIVE TOOLS FOR IN-LINE ISOTHERMAL EXTRUSION OF 6XXX ALUMINUM ALLOYS
: During the last fifty years, the metal forming of aluminum alloys advanced significantly, leading to a more competitive market on which production rate and overall quality are kept as high as possible. Within the aluminum industries, extrusion plays an important role, since many industrial products with structural or even aesthetic functions are realized with this technology. Especially in the automotive industry, the use of aluminum alloys is growing very fast, since it permits a considerable weight loss and thus a reduction of the emission. Nevertheless, the stringent quality standards required don’t allow the use of extruded aluminum alloys produced for common build-ing applications. An important parameter that can be used as an index of the quality of the extruded product is the emergent temperature: if the temperature at the exit of the press is kept constant within a certain limit, products with homogeneous properties and high-quality surface are obtained and the so called “isothermal extrusion” is achieved. As extrusion industries are spread all over the world with different levels of automation and control, a universal but simple on-line tool for deter-mining the best process condition to achieve isothermal extrusion is of particular interest. The aim of this work is to implement this model, which allows evaluation of the thermal gradient which has to be imposed on the billet. Several experiments have been carried out on an industrial extrusion press, and the outer temperature was recorded and compared with the simulated one to demon-strate the model consistency.