{"title":"基于捕获区域预计算的仿人机器人脚步与时序自适应","authors":"Y. Tazaki","doi":"10.1109/HUMANOIDS47582.2021.9555675","DOIUrl":null,"url":null,"abstract":"This study proposes a real-time footstep and timing adaptation mechanism for humanoid robots that can be integrated into a conventional walking pattern generator and increase the robustness of walking against disturbances. In order to meet the strict real-time constraint of humanoid robot control, the proposed method computes viable capture basins in the design phase. This pre-computed data can be used at runtime to modify the foot placement, the timing of landing, and the center-of-mass movement in response to applied disturbances with small computation cost. The performance of the proposed method is evaluated in simulation experiments.","PeriodicalId":320510,"journal":{"name":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Footstep and Timing Adaptation for Humanoid Robots Utilizing Pre-computation of Capture Regions\",\"authors\":\"Y. Tazaki\",\"doi\":\"10.1109/HUMANOIDS47582.2021.9555675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a real-time footstep and timing adaptation mechanism for humanoid robots that can be integrated into a conventional walking pattern generator and increase the robustness of walking against disturbances. In order to meet the strict real-time constraint of humanoid robot control, the proposed method computes viable capture basins in the design phase. This pre-computed data can be used at runtime to modify the foot placement, the timing of landing, and the center-of-mass movement in response to applied disturbances with small computation cost. The performance of the proposed method is evaluated in simulation experiments.\",\"PeriodicalId\":320510,\"journal\":{\"name\":\"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS47582.2021.9555675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS47582.2021.9555675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Footstep and Timing Adaptation for Humanoid Robots Utilizing Pre-computation of Capture Regions
This study proposes a real-time footstep and timing adaptation mechanism for humanoid robots that can be integrated into a conventional walking pattern generator and increase the robustness of walking against disturbances. In order to meet the strict real-time constraint of humanoid robot control, the proposed method computes viable capture basins in the design phase. This pre-computed data can be used at runtime to modify the foot placement, the timing of landing, and the center-of-mass movement in response to applied disturbances with small computation cost. The performance of the proposed method is evaluated in simulation experiments.