使用机器学习方法的网络入侵检测

Zakir Hossain, Md. Mahmudur Rahman Sourov, Musharrat Khan, Parves Rahman
{"title":"使用机器学习方法的网络入侵检测","authors":"Zakir Hossain, Md. Mahmudur Rahman Sourov, Musharrat Khan, Parves Rahman","doi":"10.1109/I-SMAC52330.2021.9640949","DOIUrl":null,"url":null,"abstract":"At present network intrusion is regarded as a great threat in network usage and communication. Network intrusion detection system detects and prevents anomalous activities or attacks in networks. Many classifiers are used to detect network attacks. In this paper, we have evaluated the performance of four popular classifiers, namely, Decision Tree, Support Vector Machine, Random Forest and Naïve Bayes on UNSW-NB15 dataset using Python language along with its Pandas and SKlearn libraries. We have used the complete UNSW-NB15 dataset with 43 features. Experimental results have shown improvement of accuracy for Random Forest, Decision Tree and Naïve Bayes over previously reported results produced by Apache Spark and its MLlib.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Network Intrusion Detection using Machine Learning Approaches\",\"authors\":\"Zakir Hossain, Md. Mahmudur Rahman Sourov, Musharrat Khan, Parves Rahman\",\"doi\":\"10.1109/I-SMAC52330.2021.9640949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present network intrusion is regarded as a great threat in network usage and communication. Network intrusion detection system detects and prevents anomalous activities or attacks in networks. Many classifiers are used to detect network attacks. In this paper, we have evaluated the performance of four popular classifiers, namely, Decision Tree, Support Vector Machine, Random Forest and Naïve Bayes on UNSW-NB15 dataset using Python language along with its Pandas and SKlearn libraries. We have used the complete UNSW-NB15 dataset with 43 features. Experimental results have shown improvement of accuracy for Random Forest, Decision Tree and Naïve Bayes over previously reported results produced by Apache Spark and its MLlib.\",\"PeriodicalId\":178783,\"journal\":{\"name\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC52330.2021.9640949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,网络入侵被认为是网络使用和通信中的一大威胁。网络入侵检测系统用于检测和阻止网络中的异常活动或攻击。许多分类器被用来检测网络攻击。在本文中,我们使用Python语言及其Pandas和SKlearn库,评估了四种流行的分类器,即决策树,支持向量机,随机森林和Naïve贝叶斯在UNSW-NB15数据集上的性能。我们使用了包含43个特征的完整UNSW-NB15数据集。实验结果表明,随机森林、决策树和Naïve贝叶斯的准确性比以前报道的由Apache Spark及其MLlib产生的结果有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Network Intrusion Detection using Machine Learning Approaches
At present network intrusion is regarded as a great threat in network usage and communication. Network intrusion detection system detects and prevents anomalous activities or attacks in networks. Many classifiers are used to detect network attacks. In this paper, we have evaluated the performance of four popular classifiers, namely, Decision Tree, Support Vector Machine, Random Forest and Naïve Bayes on UNSW-NB15 dataset using Python language along with its Pandas and SKlearn libraries. We have used the complete UNSW-NB15 dataset with 43 features. Experimental results have shown improvement of accuracy for Random Forest, Decision Tree and Naïve Bayes over previously reported results produced by Apache Spark and its MLlib.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Modeling of Fast Face Recognition Against Age Disturbance under Deep Learning Design of IoT Network using Deep Learning-based Model for Anomaly Detection Analysis of the Impact of Blockchain and Net Technology on the Financial Governance of Internet Enterprises Affective Music Player for Multiple Emotion Recognition Using Facial Expressions with SVM A Deep Learning technology based covid-19 prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1