文本挖掘分类技术综述

S. Brindha, K. Prabha, S. Sukumaran
{"title":"文本挖掘分类技术综述","authors":"S. Brindha, K. Prabha, S. Sukumaran","doi":"10.1109/ICACCS.2016.7586371","DOIUrl":null,"url":null,"abstract":"The development of the World Wide Web it is no longer feasible for a user can understand all the data coming from classify into categories. The expansion of information and power automatic classification of data and textual data gains increasingly and give high performance. In this paper five important text classifications are described Naive Bayesian, K-Nearest Neighbour, Support Vector Machine, Decision Tree and Regression. Which are categorized the text data into pre define class. The target of the paper is to study different classification techniques and finding the classification accuracy for different datasets. An efficient and effective text documents into mutually exclusive categories.","PeriodicalId":176803,"journal":{"name":"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A survey on classification techniques for text mining\",\"authors\":\"S. Brindha, K. Prabha, S. Sukumaran\",\"doi\":\"10.1109/ICACCS.2016.7586371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the World Wide Web it is no longer feasible for a user can understand all the data coming from classify into categories. The expansion of information and power automatic classification of data and textual data gains increasingly and give high performance. In this paper five important text classifications are described Naive Bayesian, K-Nearest Neighbour, Support Vector Machine, Decision Tree and Regression. Which are categorized the text data into pre define class. The target of the paper is to study different classification techniques and finding the classification accuracy for different datasets. An efficient and effective text documents into mutually exclusive categories.\",\"PeriodicalId\":176803,\"journal\":{\"name\":\"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCS.2016.7586371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2016.7586371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

万维网的发展使它不再可行,用户可以理解所有来自分类的数据。随着信息的扩展,数据和文本数据的自动分类能力日益增强,并给出了较高的性能。本文介绍了朴素贝叶斯、k近邻、支持向量机、决策树和回归五种重要的文本分类方法。将文本数据分类到预定义类中。本文的目标是研究不同的分类技术,并找到不同数据集的分类精度。将高效和有效的文本文档分为互斥的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey on classification techniques for text mining
The development of the World Wide Web it is no longer feasible for a user can understand all the data coming from classify into categories. The expansion of information and power automatic classification of data and textual data gains increasingly and give high performance. In this paper five important text classifications are described Naive Bayesian, K-Nearest Neighbour, Support Vector Machine, Decision Tree and Regression. Which are categorized the text data into pre define class. The target of the paper is to study different classification techniques and finding the classification accuracy for different datasets. An efficient and effective text documents into mutually exclusive categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of selfish Nodes in MANET - a survey Robust Sybil attack detection mechanism for Social Networks - a survey A comparative study of DFT and Moving Window Averaging technique of current differential protection on Transmission line Online review analytics using word alignment model on Twitter data Hybrid cryptography mechanism for securing self-organized wireless networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1