一种由自然语言指令驱动的模块化神经模糊控制器

K. Pulasinghe, K. Watanabe, K. Kiguchi, K. Izumi
{"title":"一种由自然语言指令驱动的模块化神经模糊控制器","authors":"K. Pulasinghe, K. Watanabe, K. Kiguchi, K. Izumi","doi":"10.1109/SICE.2001.977857","DOIUrl":null,"url":null,"abstract":"A method of interpreting imprecise natural language commands to machine understandable manner is presented in this paper. The proposed method tries to ease the process of man-machine interaction by combining the theoretical understanding of artificial neural networks and fuzzy logic. Both fields are very popular to mimic the human behavior in different research areas in artificial intelligence. The proposed system tries to understand the natural language command rather than mere recognition. The distinctive features of the artificial neural networks in pattern recognition and classification and the abilities of manipulating imprecise data by fuzzy systems are merged to recognize the machine sensitive words in the natural language command and then to interpret them to machine in machine identifiable manner. Modularity of the design tries to break up the complete task into manageable parts where the presence of individual part is vital to bridge the so-called man-machine gap.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel modular neuro-fuzzy controller driven by natural language commands\",\"authors\":\"K. Pulasinghe, K. Watanabe, K. Kiguchi, K. Izumi\",\"doi\":\"10.1109/SICE.2001.977857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of interpreting imprecise natural language commands to machine understandable manner is presented in this paper. The proposed method tries to ease the process of man-machine interaction by combining the theoretical understanding of artificial neural networks and fuzzy logic. Both fields are very popular to mimic the human behavior in different research areas in artificial intelligence. The proposed system tries to understand the natural language command rather than mere recognition. The distinctive features of the artificial neural networks in pattern recognition and classification and the abilities of manipulating imprecise data by fuzzy systems are merged to recognize the machine sensitive words in the natural language command and then to interpret them to machine in machine identifiable manner. Modularity of the design tries to break up the complete task into manageable parts where the presence of individual part is vital to bridge the so-called man-machine gap.\",\"PeriodicalId\":415046,\"journal\":{\"name\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2001.977857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种将不精确的自然语言命令翻译成机器可理解的方式的方法。该方法结合了人工神经网络和模糊逻辑的理论知识,简化了人机交互过程。在人工智能的不同研究领域中,这两个领域都非常流行模拟人类行为。所提出的系统试图理解自然语言命令,而不仅仅是识别。设计的模块化试图将完整的任务分解为可管理的部分,其中单个部分的存在对于弥合所谓的人机差距至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel modular neuro-fuzzy controller driven by natural language commands
A method of interpreting imprecise natural language commands to machine understandable manner is presented in this paper. The proposed method tries to ease the process of man-machine interaction by combining the theoretical understanding of artificial neural networks and fuzzy logic. Both fields are very popular to mimic the human behavior in different research areas in artificial intelligence. The proposed system tries to understand the natural language command rather than mere recognition. The distinctive features of the artificial neural networks in pattern recognition and classification and the abilities of manipulating imprecise data by fuzzy systems are merged to recognize the machine sensitive words in the natural language command and then to interpret them to machine in machine identifiable manner. Modularity of the design tries to break up the complete task into manageable parts where the presence of individual part is vital to bridge the so-called man-machine gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An approximation to EMI noise problem to design an appropriate EMI filter for induction motor control systems Two kinds of sensor data fusion in target tracking Robust control of feedback linearizable system with the parameter uncertainty and input constraint Self-tuning fuzzy logic controller for direct torque control of slip energy recovery system The frequency-domain RLS algorithm with incremental hopping-index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1