一种有效的人脸识别降维后处理方法

A. Abbad, K. Abbad, H. Tairi
{"title":"一种有效的人脸识别降维后处理方法","authors":"A. Abbad, K. Abbad, H. Tairi","doi":"10.1109/ATSIP.2017.8075609","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new post-processing approach for dimensionality reduction methods based on multidimensional ensemble empirical mode decomposition (MEEMD). In the proposed method, the features are decomposed into different components and then we maximize the dependency and the dispersion between classes thanks to Gaussian filter and Butterworth filter. The performance of the proposed algorithm is demonstrated in experiments by several dimensionality reduction techniques on two public databases.","PeriodicalId":259951,"journal":{"name":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient post-processing approach for dimensionality reduction methods for face recognition\",\"authors\":\"A. Abbad, K. Abbad, H. Tairi\",\"doi\":\"10.1109/ATSIP.2017.8075609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new post-processing approach for dimensionality reduction methods based on multidimensional ensemble empirical mode decomposition (MEEMD). In the proposed method, the features are decomposed into different components and then we maximize the dependency and the dispersion between classes thanks to Gaussian filter and Butterworth filter. The performance of the proposed algorithm is demonstrated in experiments by several dimensionality reduction techniques on two public databases.\",\"PeriodicalId\":259951,\"journal\":{\"name\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATSIP.2017.8075609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATSIP.2017.8075609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于多维集成经验模态分解(MEEMD)的降维后处理方法。该方法首先将特征分解成不同的分量,然后利用高斯滤波和巴特沃斯滤波使类间的依赖关系和离散度最大化。在两个公共数据库上进行了几种降维技术的实验,验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient post-processing approach for dimensionality reduction methods for face recognition
In this paper we propose a new post-processing approach for dimensionality reduction methods based on multidimensional ensemble empirical mode decomposition (MEEMD). In the proposed method, the features are decomposed into different components and then we maximize the dependency and the dispersion between classes thanks to Gaussian filter and Butterworth filter. The performance of the proposed algorithm is demonstrated in experiments by several dimensionality reduction techniques on two public databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Speckle noise reduction in digital speckle pattern interferometry using Riesz wavelets transform A new GLBSIF descriptor for face recognition in the uncontrolled environments Saliency attention and sift keypoints combination for automatic target recognition on MSTAR dataset A comparative study of interworking methods among differents rats in 5G context Diagnosis of osteoporosis disease from bone X-ray images with stacked sparse autoencoder and SVM classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1