单调二阶多项式拟合精确高效的背景减法

A. Lanza, Federico Tombari, L. D. Stefano
{"title":"单调二阶多项式拟合精确高效的背景减法","authors":"A. Lanza, Federico Tombari, L. D. Stefano","doi":"10.1109/AVSS.2010.45","DOIUrl":null,"url":null,"abstract":"We present a background subtraction approach aimedat efficiency and accuracy also in presence of commonsources of disturbance such as illumination changes, cameragain and exposure variations, noise. The novelty ofthe proposal relies on a-priori modeling the local effect ofdisturbs on small neighborhoods of pixel intensities as amonotonic, homogeneous, second-degree polynomial transformationplus additive Gaussian noise. This allows forclassifying pixels as changed or unchanged by an efficientinequality-constrained least-squares fitting procedure. Experimentsprove that the approach is state-of-the-art interms of efficiency-accuracy tradeoff on challenging sequencescharacterized by disturbs yielding sudden andstrong variations of the background appearance.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Accurate and Efficient Background Subtraction by Monotonic Second-Degree Polynomial Fitting\",\"authors\":\"A. Lanza, Federico Tombari, L. D. Stefano\",\"doi\":\"10.1109/AVSS.2010.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a background subtraction approach aimedat efficiency and accuracy also in presence of commonsources of disturbance such as illumination changes, cameragain and exposure variations, noise. The novelty ofthe proposal relies on a-priori modeling the local effect ofdisturbs on small neighborhoods of pixel intensities as amonotonic, homogeneous, second-degree polynomial transformationplus additive Gaussian noise. This allows forclassifying pixels as changed or unchanged by an efficientinequality-constrained least-squares fitting procedure. Experimentsprove that the approach is state-of-the-art interms of efficiency-accuracy tradeoff on challenging sequencescharacterized by disturbs yielding sudden andstrong variations of the background appearance.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种背景减法方法,旨在提高效率和准确性,同时也存在常见的干扰源,如照明变化,相机和曝光变化,噪声。该方案的新颖性依赖于先验建模,将扰动对像素强度小邻域的局部影响作为单调的,齐次的,二次多项式变换加上加性高斯噪声。这允许通过有效的不等式约束最小二乘拟合过程将像素分类为改变或不变。实验证明,该方法是最先进的效率和精度折衷的挑战性序列,其特征是干扰产生突然和强烈的背景外观变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate and Efficient Background Subtraction by Monotonic Second-Degree Polynomial Fitting
We present a background subtraction approach aimedat efficiency and accuracy also in presence of commonsources of disturbance such as illumination changes, cameragain and exposure variations, noise. The novelty ofthe proposal relies on a-priori modeling the local effect ofdisturbs on small neighborhoods of pixel intensities as amonotonic, homogeneous, second-degree polynomial transformationplus additive Gaussian noise. This allows forclassifying pixels as changed or unchanged by an efficientinequality-constrained least-squares fitting procedure. Experimentsprove that the approach is state-of-the-art interms of efficiency-accuracy tradeoff on challenging sequencescharacterized by disturbs yielding sudden andstrong variations of the background appearance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Background Modeling: An Edge Segment Based Moving Object Detection Approach Who, what, when, where, why and how in video analysis: an application centric view Trajectory Based Activity Discovery Local Abnormality Detection in Video Using Subspace Learning Functionality Delegation in Distributed Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1