{"title":"单调二阶多项式拟合精确高效的背景减法","authors":"A. Lanza, Federico Tombari, L. D. Stefano","doi":"10.1109/AVSS.2010.45","DOIUrl":null,"url":null,"abstract":"We present a background subtraction approach aimedat efficiency and accuracy also in presence of commonsources of disturbance such as illumination changes, cameragain and exposure variations, noise. The novelty ofthe proposal relies on a-priori modeling the local effect ofdisturbs on small neighborhoods of pixel intensities as amonotonic, homogeneous, second-degree polynomial transformationplus additive Gaussian noise. This allows forclassifying pixels as changed or unchanged by an efficientinequality-constrained least-squares fitting procedure. Experimentsprove that the approach is state-of-the-art interms of efficiency-accuracy tradeoff on challenging sequencescharacterized by disturbs yielding sudden andstrong variations of the background appearance.","PeriodicalId":415758,"journal":{"name":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Accurate and Efficient Background Subtraction by Monotonic Second-Degree Polynomial Fitting\",\"authors\":\"A. Lanza, Federico Tombari, L. D. Stefano\",\"doi\":\"10.1109/AVSS.2010.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a background subtraction approach aimedat efficiency and accuracy also in presence of commonsources of disturbance such as illumination changes, cameragain and exposure variations, noise. The novelty ofthe proposal relies on a-priori modeling the local effect ofdisturbs on small neighborhoods of pixel intensities as amonotonic, homogeneous, second-degree polynomial transformationplus additive Gaussian noise. This allows forclassifying pixels as changed or unchanged by an efficientinequality-constrained least-squares fitting procedure. Experimentsprove that the approach is state-of-the-art interms of efficiency-accuracy tradeoff on challenging sequencescharacterized by disturbs yielding sudden andstrong variations of the background appearance.\",\"PeriodicalId\":415758,\"journal\":{\"name\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2010.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2010.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accurate and Efficient Background Subtraction by Monotonic Second-Degree Polynomial Fitting
We present a background subtraction approach aimedat efficiency and accuracy also in presence of commonsources of disturbance such as illumination changes, cameragain and exposure variations, noise. The novelty ofthe proposal relies on a-priori modeling the local effect ofdisturbs on small neighborhoods of pixel intensities as amonotonic, homogeneous, second-degree polynomial transformationplus additive Gaussian noise. This allows forclassifying pixels as changed or unchanged by an efficientinequality-constrained least-squares fitting procedure. Experimentsprove that the approach is state-of-the-art interms of efficiency-accuracy tradeoff on challenging sequencescharacterized by disturbs yielding sudden andstrong variations of the background appearance.