高斯码本连续细化的过度失真指数

Zhuangfei Wu, Lin Bai, Lin Zhou
{"title":"高斯码本连续细化的过度失真指数","authors":"Zhuangfei Wu, Lin Bai, Lin Zhou","doi":"10.1109/ISIT50566.2022.9834848","DOIUrl":null,"url":null,"abstract":"This paper is eligible for the Jack Keil Wolf ISIT Student Paper Award. We derive achievability results on large deviations for mismatched successive refinement where one uses random i.i.d. Gaussian codebooks and minimum Euclidean distance encoding to compress an arbitrary memoryless source. Specifically, we consider both separate and joint excess-distortion criterion and derive achievable error exponents for both cases. Under the mismatched coding scheme, we show that the exponent of the joint excess-distortion probability equals the exponent of one of the separate excess-distortion probabilities, depending on the compression rate of the second encoder only. When specialized to a Gaussian memoryless source (GMS), we obtain the first achievable error exponent region. However, in contrast to the second-order asymptotics and to the large deviations for mismatched rate-distortion, the specialized result for GMS is not optimal. Further investigations are required to close the gap.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Excess-Distortion Exponents for Successive Refinement Using Gaussian Codebooks\",\"authors\":\"Zhuangfei Wu, Lin Bai, Lin Zhou\",\"doi\":\"10.1109/ISIT50566.2022.9834848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is eligible for the Jack Keil Wolf ISIT Student Paper Award. We derive achievability results on large deviations for mismatched successive refinement where one uses random i.i.d. Gaussian codebooks and minimum Euclidean distance encoding to compress an arbitrary memoryless source. Specifically, we consider both separate and joint excess-distortion criterion and derive achievable error exponents for both cases. Under the mismatched coding scheme, we show that the exponent of the joint excess-distortion probability equals the exponent of one of the separate excess-distortion probabilities, depending on the compression rate of the second encoder only. When specialized to a Gaussian memoryless source (GMS), we obtain the first achievable error exponent region. However, in contrast to the second-order asymptotics and to the large deviations for mismatched rate-distortion, the specialized result for GMS is not optimal. Further investigations are required to close the gap.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

这篇论文有资格获得Jack Keil Wolf ISIT学生论文奖。我们推导了在大偏差下不匹配连续细化的可实现性结果,其中使用随机i.i.d高斯码本和最小欧几里得距离编码来压缩任意无内存源。具体地说,我们考虑了单独和联合的过度畸变判据,并推导了两种情况下可实现的误差指数。在不匹配编码方案下,我们证明了联合过度失真概率的指数等于单独过度失真概率之一的指数,仅依赖于第二个编码器的压缩率。当对高斯无记忆源(GMS)进行专门化处理时,我们得到了第一个可实现的误差指数区域。然而,与二阶渐近和不匹配率失真的大偏差相比,GMS的专门化结果不是最优的。需要进一步的调查来缩小差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Excess-Distortion Exponents for Successive Refinement Using Gaussian Codebooks
This paper is eligible for the Jack Keil Wolf ISIT Student Paper Award. We derive achievability results on large deviations for mismatched successive refinement where one uses random i.i.d. Gaussian codebooks and minimum Euclidean distance encoding to compress an arbitrary memoryless source. Specifically, we consider both separate and joint excess-distortion criterion and derive achievable error exponents for both cases. Under the mismatched coding scheme, we show that the exponent of the joint excess-distortion probability equals the exponent of one of the separate excess-distortion probabilities, depending on the compression rate of the second encoder only. When specialized to a Gaussian memoryless source (GMS), we obtain the first achievable error exponent region. However, in contrast to the second-order asymptotics and to the large deviations for mismatched rate-distortion, the specialized result for GMS is not optimal. Further investigations are required to close the gap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1