J. Suh, Jimyeong Kim, Eunjung Lee, Jaeill Kim, Duhun Hwang, J. Park, Junghoon Lee, Jaeseung Park, Seo-Yoon Moon, Yeonsu Kim, Min-Ho Kang, Soo-Jung Kwon, E. Choi, Wonjong Rhee
{"title":"学习ECG表征用于心脏异常的多标签分类","authors":"J. Suh, Jimyeong Kim, Eunjung Lee, Jaeill Kim, Duhun Hwang, J. Park, Junghoon Lee, Jaeseung Park, Seo-Yoon Moon, Yeonsu Kim, Min-Ho Kang, Soo-Jung Kwon, E. Choi, Wonjong Rhee","doi":"10.23919/cinc53138.2021.9662753","DOIUrl":null,"url":null,"abstract":"The goal of PhysioNet/Computing in Cardiology Challenge 2021 was to identify clinical diagnoses from 12 -lead and reduced-lead ECG recordings, including 6-lead, 4-lead, 3-lead, and 2-lead recordings. Our team, snu_adsl, have used EfficientNet-B3 as the base deep learning model and have investigated methods including data augmentation, self-supervised learning as pre-training, label masking that deals with multiple data sources, threshold optimization, and feature extraction. Self-supervised learning showed promising results when the size of labeled dataset was limited, but the competition's dataset turned out to be large enough that the actual gain was marginal. In consequence, we did not include self-supervised pre-training in our final entry. Our classifiers received scores of 0.48, 0.48, 0.47, 0.47, and 0.45 (ranked 12th, 10th, 11th, 11th, and 13th out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2 -lead versions of the hidden test set with the Challenge evaluation metric.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Learning ECG Representations for Multi-Label Classification of Cardiac Abnormalities\",\"authors\":\"J. Suh, Jimyeong Kim, Eunjung Lee, Jaeill Kim, Duhun Hwang, J. Park, Junghoon Lee, Jaeseung Park, Seo-Yoon Moon, Yeonsu Kim, Min-Ho Kang, Soo-Jung Kwon, E. Choi, Wonjong Rhee\",\"doi\":\"10.23919/cinc53138.2021.9662753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of PhysioNet/Computing in Cardiology Challenge 2021 was to identify clinical diagnoses from 12 -lead and reduced-lead ECG recordings, including 6-lead, 4-lead, 3-lead, and 2-lead recordings. Our team, snu_adsl, have used EfficientNet-B3 as the base deep learning model and have investigated methods including data augmentation, self-supervised learning as pre-training, label masking that deals with multiple data sources, threshold optimization, and feature extraction. Self-supervised learning showed promising results when the size of labeled dataset was limited, but the competition's dataset turned out to be large enough that the actual gain was marginal. In consequence, we did not include self-supervised pre-training in our final entry. Our classifiers received scores of 0.48, 0.48, 0.47, 0.47, and 0.45 (ranked 12th, 10th, 11th, 11th, and 13th out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2 -lead versions of the hidden test set with the Challenge evaluation metric.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
PhysioNet/Computing in Cardiology Challenge 2021的目标是从12导联和减少导联的心电图记录中识别临床诊断,包括6导联、4导联、3导联和2导联记录。我们的团队snu_adsl使用了EfficientNet-B3作为基础深度学习模型,并研究了包括数据增强、自监督学习作为预训练、处理多个数据源的标签屏蔽、阈值优化和特征提取在内的方法。当标记数据集的大小有限时,自监督学习显示出有希望的结果,但竞争对手的数据集足够大,实际收益是边际的。因此,我们在最终的条目中没有包括自我监督的预训练。我们的分类器获得了0.48,0.48,0.47,0.47和0.45的分数(在39个团队中排名第12,第10,第11,第11和第13),用于12-lead, 6-lead, 4-lead, 3-lead和2-lead版本的隐藏测试集与挑战评估指标。
Learning ECG Representations for Multi-Label Classification of Cardiac Abnormalities
The goal of PhysioNet/Computing in Cardiology Challenge 2021 was to identify clinical diagnoses from 12 -lead and reduced-lead ECG recordings, including 6-lead, 4-lead, 3-lead, and 2-lead recordings. Our team, snu_adsl, have used EfficientNet-B3 as the base deep learning model and have investigated methods including data augmentation, self-supervised learning as pre-training, label masking that deals with multiple data sources, threshold optimization, and feature extraction. Self-supervised learning showed promising results when the size of labeled dataset was limited, but the competition's dataset turned out to be large enough that the actual gain was marginal. In consequence, we did not include self-supervised pre-training in our final entry. Our classifiers received scores of 0.48, 0.48, 0.47, 0.47, and 0.45 (ranked 12th, 10th, 11th, 11th, and 13th out of 39 teams) for the 12-lead, 6-lead, 4-lead, 3-lead, and 2 -lead versions of the hidden test set with the Challenge evaluation metric.