Moreno Ambrosin, M. Conti, Ahmad Ibrahim, G. Neven, A. Sadeghi, M. Schunter
{"title":"海报:迈向安全和可扩展的认证","authors":"Moreno Ambrosin, M. Conti, Ahmad Ibrahim, G. Neven, A. Sadeghi, M. Schunter","doi":"10.1145/2939918.2942425","DOIUrl":null,"url":null,"abstract":"Large numbers of smart devices are permeating our environment to collect data and act on the insight derived. Examples of such devices include smart homes, factories, cars, or wearables. For privacy, security, and safety, ensuring correctness of the configuration of these devices is essential. One key mechanism to protect the software integrity of these devices is attestation. In this paper, we analyze the requirements for efficient attestation of large numbers of interconnected embedded systems. We present the first collective attestation protocol which allows attesting an unlimited number of devices. Simulation results show a run-time of 5.3 seconds in networks of 50,000 low-end embedded devices.","PeriodicalId":387704,"journal":{"name":"Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POSTER: Toward a Secure and Scalable Attestation\",\"authors\":\"Moreno Ambrosin, M. Conti, Ahmad Ibrahim, G. Neven, A. Sadeghi, M. Schunter\",\"doi\":\"10.1145/2939918.2942425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large numbers of smart devices are permeating our environment to collect data and act on the insight derived. Examples of such devices include smart homes, factories, cars, or wearables. For privacy, security, and safety, ensuring correctness of the configuration of these devices is essential. One key mechanism to protect the software integrity of these devices is attestation. In this paper, we analyze the requirements for efficient attestation of large numbers of interconnected embedded systems. We present the first collective attestation protocol which allows attesting an unlimited number of devices. Simulation results show a run-time of 5.3 seconds in networks of 50,000 low-end embedded devices.\",\"PeriodicalId\":387704,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2939918.2942425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2939918.2942425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large numbers of smart devices are permeating our environment to collect data and act on the insight derived. Examples of such devices include smart homes, factories, cars, or wearables. For privacy, security, and safety, ensuring correctness of the configuration of these devices is essential. One key mechanism to protect the software integrity of these devices is attestation. In this paper, we analyze the requirements for efficient attestation of large numbers of interconnected embedded systems. We present the first collective attestation protocol which allows attesting an unlimited number of devices. Simulation results show a run-time of 5.3 seconds in networks of 50,000 low-end embedded devices.