一种用于在线手写符号识别的快速特征选择模型

B. Huang, Mohand Tahar Kechadi
{"title":"一种用于在线手写符号识别的快速特征选择模型","authors":"B. Huang, Mohand Tahar Kechadi","doi":"10.1109/ICMLA.2006.6","DOIUrl":null,"url":null,"abstract":"Many feature selection models have been proposed for online handwriting recognition. However, most of them require expensive computational overhead, or inaccurately find an improper feature set which leads to unacceptable recognition rates. This paper presents a new efficient feature selection model for handwriting symbol recognition by using an improved sequential floating search method coupled with a hybrid classifier, which is obtained by combining hidden Markov models with multilayer forward network. The effectiveness of proposed method is verified by comprehensive experiments based on UNIPEN database","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Fast Feature Selection Model for Online Handwriting Symbol Recognition\",\"authors\":\"B. Huang, Mohand Tahar Kechadi\",\"doi\":\"10.1109/ICMLA.2006.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many feature selection models have been proposed for online handwriting recognition. However, most of them require expensive computational overhead, or inaccurately find an improper feature set which leads to unacceptable recognition rates. This paper presents a new efficient feature selection model for handwriting symbol recognition by using an improved sequential floating search method coupled with a hybrid classifier, which is obtained by combining hidden Markov models with multilayer forward network. The effectiveness of proposed method is verified by comprehensive experiments based on UNIPEN database\",\"PeriodicalId\":297071,\"journal\":{\"name\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"volume\":\"226 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2006.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

针对在线手写识别,已经提出了许多特征选择模型。然而,大多数方法都需要昂贵的计算开销,或者不能准确地找到不合适的特征集,从而导致不可接受的识别率。将隐马尔可夫模型与多层前向网络相结合,提出了一种改进的顺序浮动搜索法与混合分类器相结合的高效手写符号特征选择模型。基于UNIPEN数据库的综合实验验证了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Fast Feature Selection Model for Online Handwriting Symbol Recognition
Many feature selection models have been proposed for online handwriting recognition. However, most of them require expensive computational overhead, or inaccurately find an improper feature set which leads to unacceptable recognition rates. This paper presents a new efficient feature selection model for handwriting symbol recognition by using an improved sequential floating search method coupled with a hybrid classifier, which is obtained by combining hidden Markov models with multilayer forward network. The effectiveness of proposed method is verified by comprehensive experiments based on UNIPEN database
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Heuristic for Discovering Multiple Ill-Defined Attributes in Datasets Robust Model Selection Using Cross Validation: A Simple Iterative Technique for Developing Robust Gene Signatures in Biomedical Genomics Applications Detecting Web Content Function Using Generalized Hidden Markov Model Naive Bayes Classification Given Probability Estimation Trees A New Machine Learning Technique Based on Straight Line Segments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1