一种新的鲁棒自适应步长LMS算法

D. I. Pazaitis, A. Constantinides
{"title":"一种新的鲁棒自适应步长LMS算法","authors":"D. I. Pazaitis, A. Constantinides","doi":"10.5281/ZENODO.35932","DOIUrl":null,"url":null,"abstract":"In this contribution a new robust technique for adjusting the step size of the Least Mean Squares (LMS) adaptive algorithm is introduced. The proposed method exhibits faster convergence, enhanced tracking ability and lower steady state excess error compared to the fixed step size LMS and other previously developed variable step size algorithms, while retaining much of the LMS computational simplicity. A theoretical behaviour analysis is conducted and equations regarding the evolution of the weight error vector correlation matrix together with convergence bounds are established. Extensive simulation results support the theoretical analysis and confirm the desirable characteristics of the proposed algorithm.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new robust adaptive step size LMS algorithm\",\"authors\":\"D. I. Pazaitis, A. Constantinides\",\"doi\":\"10.5281/ZENODO.35932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution a new robust technique for adjusting the step size of the Least Mean Squares (LMS) adaptive algorithm is introduced. The proposed method exhibits faster convergence, enhanced tracking ability and lower steady state excess error compared to the fixed step size LMS and other previously developed variable step size algorithms, while retaining much of the LMS computational simplicity. A theoretical behaviour analysis is conducted and equations regarding the evolution of the weight error vector correlation matrix together with convergence bounds are established. Extensive simulation results support the theoretical analysis and confirm the desirable characteristics of the proposed algorithm.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.35932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.35932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种新的鲁棒技术,用于调整最小均方(LMS)自适应算法的步长。与固定步长LMS和其他已开发的变步长LMS算法相比,该方法具有更快的收敛速度、更强的跟踪能力和更小的稳态过量误差,同时保留了LMS计算的简便性。进行了理论行为分析,建立了权值误差矢量相关矩阵的演化方程和收敛界。大量的仿真结果支持了理论分析,并证实了所提出算法的理想特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new robust adaptive step size LMS algorithm
In this contribution a new robust technique for adjusting the step size of the Least Mean Squares (LMS) adaptive algorithm is introduced. The proposed method exhibits faster convergence, enhanced tracking ability and lower steady state excess error compared to the fixed step size LMS and other previously developed variable step size algorithms, while retaining much of the LMS computational simplicity. A theoretical behaviour analysis is conducted and equations regarding the evolution of the weight error vector correlation matrix together with convergence bounds are established. Extensive simulation results support the theoretical analysis and confirm the desirable characteristics of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Parameter estimation of exponentially damped sinusoids using second order statistics A multivariable Steiglitz-McBride method On the approximation of nonbandlimited signals by nonuniform sampling series Model reduction by Kautz filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1