基于空间矢量调制(SVM)的基于二进制电容电压控制(BCVC)的飞电容箝位多电平变换器(FCCMC)用于低标称直流电压应用

Sanghun Choi, A. Meliopoulos
{"title":"基于空间矢量调制(SVM)的基于二进制电容电压控制(BCVC)的飞电容箝位多电平变换器(FCCMC)用于低标称直流电压应用","authors":"Sanghun Choi, A. Meliopoulos","doi":"10.1109/ICIT46573.2021.9453556","DOIUrl":null,"url":null,"abstract":"Maximizing DC-AC power conversion quality and efficiency while minimizing hardware and control complexity is a major technical challenge for multilevel converters in low nominal DC voltage applications. Among the conventional multilevel converters, the flying-capacitor-clamped multilevel converter (FCCMC) has the least hardware and control complexity; and redundant switching combinations for each reference multilevel voltage due to its flying capacitors clamped to serially-connected switches. The space vector modulation (SVM) method synthesizes a reference voltage vector by utilizing the three adjacent voltage vectors, and each voltage vector has a three-phase multilevel-voltage combination redundancy. Furthermore, these switching combination and three-phase multilevel-voltage combination redundancies can lead to various clamped flying-capacitor voltage and converter-leg voltage control strategies. This paper proposes a new FCCMC concept utilizing the advantages of FCCMC and SVM to address the above primary technical challenge. The proposed SVM-exploited binary capacitor voltage control (BCVC) regulates the clamped flying-capacitor voltages at the power-of-two reference values and the converter-leg voltages at the multilevel reference values through a Lyapunov stability-based cost-function optimization approach exploiting the binary numeral system. In low nominal DC voltage applications, the proposed FCCMC significantly improves the DC-AC power conversion quality and efficiency by synthesizing a sinusoidal AC voltage with a large number of voltage levels while extensively reducing the hardware and control complexity. Simulation results demonstrate the steady-state and dynamic performance of the proposed FCCMC under various operating conditions.","PeriodicalId":193338,"journal":{"name":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space Vector Modulation (SVM)-exploited Binary Capacitor Voltage Control (BCVC)-based Flying-Capacitor-Clamped Multilevel Converter (FCCMC) for Low Nominal DC Voltage Applications\",\"authors\":\"Sanghun Choi, A. Meliopoulos\",\"doi\":\"10.1109/ICIT46573.2021.9453556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maximizing DC-AC power conversion quality and efficiency while minimizing hardware and control complexity is a major technical challenge for multilevel converters in low nominal DC voltage applications. Among the conventional multilevel converters, the flying-capacitor-clamped multilevel converter (FCCMC) has the least hardware and control complexity; and redundant switching combinations for each reference multilevel voltage due to its flying capacitors clamped to serially-connected switches. The space vector modulation (SVM) method synthesizes a reference voltage vector by utilizing the three adjacent voltage vectors, and each voltage vector has a three-phase multilevel-voltage combination redundancy. Furthermore, these switching combination and three-phase multilevel-voltage combination redundancies can lead to various clamped flying-capacitor voltage and converter-leg voltage control strategies. This paper proposes a new FCCMC concept utilizing the advantages of FCCMC and SVM to address the above primary technical challenge. The proposed SVM-exploited binary capacitor voltage control (BCVC) regulates the clamped flying-capacitor voltages at the power-of-two reference values and the converter-leg voltages at the multilevel reference values through a Lyapunov stability-based cost-function optimization approach exploiting the binary numeral system. In low nominal DC voltage applications, the proposed FCCMC significantly improves the DC-AC power conversion quality and efficiency by synthesizing a sinusoidal AC voltage with a large number of voltage levels while extensively reducing the hardware and control complexity. Simulation results demonstrate the steady-state and dynamic performance of the proposed FCCMC under various operating conditions.\",\"PeriodicalId\":193338,\"journal\":{\"name\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd IEEE International Conference on Industrial Technology (ICIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT46573.2021.9453556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT46573.2021.9453556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最大限度地提高直流-交流功率转换的质量和效率,同时最大限度地降低硬件和控制的复杂性,是低标称直流电压应用中多电平转换器的主要技术挑战。在传统的多电平变换器中,飞容箝位多电平变换器(FCCMC)的硬件和控制复杂度最低;每个参考多电平电压的冗余开关组合,由于其飞行电容器夹紧在串行连接的开关上。空间矢量调制(SVM)方法利用三个相邻电压矢量合成一个参考电压矢量,每个电压矢量具有三相多电平组合冗余。此外,这些开关组合和三相多电平电压组合冗余可以导致各种箝位飞电容电压和变换器腿电压控制策略。本文提出了一个新的FCCMC概念,利用FCCMC和SVM的优势来解决上述主要的技术挑战。采用基于李雅普诺夫稳定性的代价函数优化方法,利用二进制数系统,实现了基于支持向量机的二值电容电压控制(BCVC)和基于多电平参考值的变换器支路电压控制。在低标称直流电压应用中,FCCMC通过合成具有大量电压电平的正弦交流电压,显著提高了DC-AC功率转换的质量和效率,同时大大降低了硬件和控制的复杂性。仿真结果验证了所提出的FCCMC在不同工况下的稳态和动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Space Vector Modulation (SVM)-exploited Binary Capacitor Voltage Control (BCVC)-based Flying-Capacitor-Clamped Multilevel Converter (FCCMC) for Low Nominal DC Voltage Applications
Maximizing DC-AC power conversion quality and efficiency while minimizing hardware and control complexity is a major technical challenge for multilevel converters in low nominal DC voltage applications. Among the conventional multilevel converters, the flying-capacitor-clamped multilevel converter (FCCMC) has the least hardware and control complexity; and redundant switching combinations for each reference multilevel voltage due to its flying capacitors clamped to serially-connected switches. The space vector modulation (SVM) method synthesizes a reference voltage vector by utilizing the three adjacent voltage vectors, and each voltage vector has a three-phase multilevel-voltage combination redundancy. Furthermore, these switching combination and three-phase multilevel-voltage combination redundancies can lead to various clamped flying-capacitor voltage and converter-leg voltage control strategies. This paper proposes a new FCCMC concept utilizing the advantages of FCCMC and SVM to address the above primary technical challenge. The proposed SVM-exploited binary capacitor voltage control (BCVC) regulates the clamped flying-capacitor voltages at the power-of-two reference values and the converter-leg voltages at the multilevel reference values through a Lyapunov stability-based cost-function optimization approach exploiting the binary numeral system. In low nominal DC voltage applications, the proposed FCCMC significantly improves the DC-AC power conversion quality and efficiency by synthesizing a sinusoidal AC voltage with a large number of voltage levels while extensively reducing the hardware and control complexity. Simulation results demonstrate the steady-state and dynamic performance of the proposed FCCMC under various operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Z Packed U-cell (ZPUC) topology, configuration of single DC Source single-phase and three-phase Multilevel Converter Optimal Utilization of the Dual-Active Bridge Converter with Bidirectional Charge Control Long Short-Term Memory based RNN for COVID-19 disease prediction Bispectrum and Kurtosis Analysis of Rotor Currents for the Detection of Field Winding Faults in Synchronous Motors Sequence-Frame Coupling Admittance Analysis and Stability of VSC Connected to Weak Grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1