连接直流家庭与交流电网的电力电子拓扑比较分析

T. Sousa, V. Monteiro, J. S. Martins, M. Sepulveda, A. Lima, J. Afonso
{"title":"连接直流家庭与交流电网的电力电子拓扑比较分析","authors":"T. Sousa, V. Monteiro, J. S. Martins, M. Sepulveda, A. Lima, J. Afonso","doi":"10.1109/SEST.2019.8849046","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative analysis of power electronics topologies that can be used to interface dc homes with a 230 V, 50 Hz ac power grid. Dc homes represent an essential asset for smart grids, since energy storage systems and renewable energy sources, such as photovoltaic solar panels, operate in dc, as well as most of the electrical appliances used in domestic scenario. However, since the power grid operates in ac, it is necessary to convert voltage from ac to dc to properly supply a dc home. This conversion can be accomplished in several ways, with different power conversion stages. In this context, this paper analyzes three different possibilities that can be used to perform the interface between the ac power grid and a dc home: (1) ac-dc converter using a low frequency transformer; (2) ac-dc and dc-dc converters using a high frequency transformer; (3) ac-ac and ac-dc converters using a medium frequency transformer. These three possibilities are compared in terms of efficiency, total power factor and total harmonic distortion of the ac power grid. The results were obtained by means of a simulation model based on the internal parameters of the power semiconductors.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparative Analysis of Power Electronics Topologies to Interface dc Homes with the Electrical ac Power Grid\",\"authors\":\"T. Sousa, V. Monteiro, J. S. Martins, M. Sepulveda, A. Lima, J. Afonso\",\"doi\":\"10.1109/SEST.2019.8849046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative analysis of power electronics topologies that can be used to interface dc homes with a 230 V, 50 Hz ac power grid. Dc homes represent an essential asset for smart grids, since energy storage systems and renewable energy sources, such as photovoltaic solar panels, operate in dc, as well as most of the electrical appliances used in domestic scenario. However, since the power grid operates in ac, it is necessary to convert voltage from ac to dc to properly supply a dc home. This conversion can be accomplished in several ways, with different power conversion stages. In this context, this paper analyzes three different possibilities that can be used to perform the interface between the ac power grid and a dc home: (1) ac-dc converter using a low frequency transformer; (2) ac-dc and dc-dc converters using a high frequency transformer; (3) ac-ac and ac-dc converters using a medium frequency transformer. These three possibilities are compared in terms of efficiency, total power factor and total harmonic distortion of the ac power grid. The results were obtained by means of a simulation model based on the internal parameters of the power semiconductors.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了可用于连接直流家庭与230 V, 50 Hz交流电网的电力电子拓扑结构的比较分析。直流家庭代表了智能电网的重要资产,因为储能系统和可再生能源,如光伏太阳能电池板,在直流中运行,以及在家庭场景中使用的大多数电器。然而,由于电网在交流中运行,有必要将电压从交流转换为直流,以适当地为直流家庭供电。这种转换可以通过不同的功率转换阶段以几种方式完成。在此背景下,本文分析了三种不同的可能性,可用于执行交流电网和直流家庭之间的接口:(1)使用低频变压器的交直流变换器;(2)采用高频变压器的ac-dc和dc-dc变换器;(3)采用中频变压器的交-交和交-直流变换器。从交流电网的效率、总功率因数和总谐波畸变三个方面对这三种可能性进行了比较。通过基于功率半导体内部参数的仿真模型,得到了上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of Power Electronics Topologies to Interface dc Homes with the Electrical ac Power Grid
This paper presents a comparative analysis of power electronics topologies that can be used to interface dc homes with a 230 V, 50 Hz ac power grid. Dc homes represent an essential asset for smart grids, since energy storage systems and renewable energy sources, such as photovoltaic solar panels, operate in dc, as well as most of the electrical appliances used in domestic scenario. However, since the power grid operates in ac, it is necessary to convert voltage from ac to dc to properly supply a dc home. This conversion can be accomplished in several ways, with different power conversion stages. In this context, this paper analyzes three different possibilities that can be used to perform the interface between the ac power grid and a dc home: (1) ac-dc converter using a low frequency transformer; (2) ac-dc and dc-dc converters using a high frequency transformer; (3) ac-ac and ac-dc converters using a medium frequency transformer. These three possibilities are compared in terms of efficiency, total power factor and total harmonic distortion of the ac power grid. The results were obtained by means of a simulation model based on the internal parameters of the power semiconductors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement Data Acquisition System in Laboratory for Renewable Energy Sources Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios What time-period aggregation method works best for power system operation models with renewables and storage? Primary and Secondary Control in Lossy Inverter-Based Microgrids Analysis of Battery Energy Storage System Integration in a Combined Cycle Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1