{"title":"在复杂的消费者学习环境中对先前学习的保护","authors":"Juliano Laran, Marcus Cunha, Chris Janiszewski","doi":"10.1086/523293","DOIUrl":null,"url":null,"abstract":"As a product category evolves, consumers have the opportunity to learn a series of feature-benefit associations. Initially, consumers learn that some features predict a critical benefit, whereas other features do not. Subsequently, consumers have the opportunity to assess if previously predictive features, or novel features, predict new product benefits. Surprisingly, later learning is characterized by attenuated learning about previously predictive features relative to novel features. This tendency to ignore previously predictive features is consistent with a desire to protect prior learning. (c) 2007 by JOURNAL OF CONSUMER RESEARCH, Inc..","PeriodicalId":268180,"journal":{"name":"ACR North American Advances","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Protection of Prior Learning in Complex Consumer Learning Environments\",\"authors\":\"Juliano Laran, Marcus Cunha, Chris Janiszewski\",\"doi\":\"10.1086/523293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a product category evolves, consumers have the opportunity to learn a series of feature-benefit associations. Initially, consumers learn that some features predict a critical benefit, whereas other features do not. Subsequently, consumers have the opportunity to assess if previously predictive features, or novel features, predict new product benefits. Surprisingly, later learning is characterized by attenuated learning about previously predictive features relative to novel features. This tendency to ignore previously predictive features is consistent with a desire to protect prior learning. (c) 2007 by JOURNAL OF CONSUMER RESEARCH, Inc..\",\"PeriodicalId\":268180,\"journal\":{\"name\":\"ACR North American Advances\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACR North American Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/523293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACR North American Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/523293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Protection of Prior Learning in Complex Consumer Learning Environments
As a product category evolves, consumers have the opportunity to learn a series of feature-benefit associations. Initially, consumers learn that some features predict a critical benefit, whereas other features do not. Subsequently, consumers have the opportunity to assess if previously predictive features, or novel features, predict new product benefits. Surprisingly, later learning is characterized by attenuated learning about previously predictive features relative to novel features. This tendency to ignore previously predictive features is consistent with a desire to protect prior learning. (c) 2007 by JOURNAL OF CONSUMER RESEARCH, Inc..