基于手掌质心粒子群搜索和肤色分类分割的手指签名识别人机交互

Z. Hamici
{"title":"基于手掌质心粒子群搜索和肤色分类分割的手指签名识别人机交互","authors":"Z. Hamici","doi":"10.1109/IPTA.2018.8608145","DOIUrl":null,"url":null,"abstract":"This paper presents a novel image processing technique for recognizing finger signs language alphabet. A human-computer interaction system is built based on the recognition of sign language which constitutes an interface between the computer and hearing-impaired persons, or as an assistive technology in industrial robotics. The sign language recognition is articulated on the extraction of the contours of the sign language alphabets, therefore, converting image recognition into one dimensional signal processing, which improves the recognition efficiency and significantly reduces the processing time. The pre-processing of images is performed by a novel skin-color region segmentation defined inside the standard RGB (sRGB) color space, then a morphological filtering is used for non-skin residuals removal. Afterwards, a circular correlation achieves the identification of the sign language after extracting the sign closed contour vector and performing matching between extracted vector and target alphabets vectors. The closed contour vector is generated around the hand palm centroid with position optimized by a particle swarm optimization algorithm search. Finally, a multi-objective function is used for computing the recognition score. The results presented in this paper for skin color segmentation, centroid search and pattern recognition show high effectiveness of the novel artificial vision engine.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-Computer Interaction using Finger Signing Recognition with Hand Palm Centroid PSO Search and Skin-Color Classification and Segmentation\",\"authors\":\"Z. Hamici\",\"doi\":\"10.1109/IPTA.2018.8608145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel image processing technique for recognizing finger signs language alphabet. A human-computer interaction system is built based on the recognition of sign language which constitutes an interface between the computer and hearing-impaired persons, or as an assistive technology in industrial robotics. The sign language recognition is articulated on the extraction of the contours of the sign language alphabets, therefore, converting image recognition into one dimensional signal processing, which improves the recognition efficiency and significantly reduces the processing time. The pre-processing of images is performed by a novel skin-color region segmentation defined inside the standard RGB (sRGB) color space, then a morphological filtering is used for non-skin residuals removal. Afterwards, a circular correlation achieves the identification of the sign language after extracting the sign closed contour vector and performing matching between extracted vector and target alphabets vectors. The closed contour vector is generated around the hand palm centroid with position optimized by a particle swarm optimization algorithm search. Finally, a multi-objective function is used for computing the recognition score. The results presented in this paper for skin color segmentation, centroid search and pattern recognition show high effectiveness of the novel artificial vision engine.\",\"PeriodicalId\":272294,\"journal\":{\"name\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2018.8608145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的用于识别手势、语言字母的图像处理技术。基于手语识别的人机交互系统构成了计算机与听障人士之间的接口,或作为工业机器人的辅助技术。因此,将图像识别转化为一维信号处理,提高了识别效率,显著缩短了处理时间。首先在标准RGB (sRGB)色彩空间内定义一种新的肤色区域分割方法,对图像进行预处理,然后使用形态学滤波去除非皮肤残差。然后提取符号闭合轮廓向量,并将提取的向量与目标字母向量进行匹配,通过循环相关实现对手语的识别。在手掌质心周围生成闭合轮廓向量,并通过粒子群优化算法进行位置优化。最后,利用多目标函数计算识别分数。本文在肤色分割、质心搜索和模式识别方面的实验结果表明,该人工视觉引擎具有很高的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-Computer Interaction using Finger Signing Recognition with Hand Palm Centroid PSO Search and Skin-Color Classification and Segmentation
This paper presents a novel image processing technique for recognizing finger signs language alphabet. A human-computer interaction system is built based on the recognition of sign language which constitutes an interface between the computer and hearing-impaired persons, or as an assistive technology in industrial robotics. The sign language recognition is articulated on the extraction of the contours of the sign language alphabets, therefore, converting image recognition into one dimensional signal processing, which improves the recognition efficiency and significantly reduces the processing time. The pre-processing of images is performed by a novel skin-color region segmentation defined inside the standard RGB (sRGB) color space, then a morphological filtering is used for non-skin residuals removal. Afterwards, a circular correlation achieves the identification of the sign language after extracting the sign closed contour vector and performing matching between extracted vector and target alphabets vectors. The closed contour vector is generated around the hand palm centroid with position optimized by a particle swarm optimization algorithm search. Finally, a multi-objective function is used for computing the recognition score. The results presented in this paper for skin color segmentation, centroid search and pattern recognition show high effectiveness of the novel artificial vision engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Drowsiness Detection in Facial Images InNet: Learning to Detect Shadows with Injection Network Image Classification Method in DR Image Based on Transfer Learning Video Tracking of Insect Flight Path: Towards Behavioral Assessment Image Registration Algorithm Based on Super pixel Segmentation and SURF Feature Points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1