{"title":"减少BIST资源的调度和模块分配","authors":"I. Parulkar, S. Gupta, M. Breuer","doi":"10.1109/DATE.1998.655838","DOIUrl":null,"url":null,"abstract":"Built-in self-test (BIST) techniques modify functional hardware to give a data path the capability to test itself. The modification of data path registers into registers (BIST resources) that can generate pseudo-random test patterns and/or compress test responses, incurs an area overhead penalty. We show how scheduling and module assignment in high-level synthesis affect BIST resource requirements of a data path. A scheduling and module assignment procedure is presented that produces schedules which, when used to synthesize data paths, result in a significant reduction in BIST area overhead and hence total area.","PeriodicalId":179207,"journal":{"name":"Proceedings Design, Automation and Test in Europe","volume":"52 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Scheduling and module assignment for reducing BIST resources\",\"authors\":\"I. Parulkar, S. Gupta, M. Breuer\",\"doi\":\"10.1109/DATE.1998.655838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Built-in self-test (BIST) techniques modify functional hardware to give a data path the capability to test itself. The modification of data path registers into registers (BIST resources) that can generate pseudo-random test patterns and/or compress test responses, incurs an area overhead penalty. We show how scheduling and module assignment in high-level synthesis affect BIST resource requirements of a data path. A scheduling and module assignment procedure is presented that produces schedules which, when used to synthesize data paths, result in a significant reduction in BIST area overhead and hence total area.\",\"PeriodicalId\":179207,\"journal\":{\"name\":\"Proceedings Design, Automation and Test in Europe\",\"volume\":\"52 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Design, Automation and Test in Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.1998.655838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Design, Automation and Test in Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.1998.655838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scheduling and module assignment for reducing BIST resources
Built-in self-test (BIST) techniques modify functional hardware to give a data path the capability to test itself. The modification of data path registers into registers (BIST resources) that can generate pseudo-random test patterns and/or compress test responses, incurs an area overhead penalty. We show how scheduling and module assignment in high-level synthesis affect BIST resource requirements of a data path. A scheduling and module assignment procedure is presented that produces schedules which, when used to synthesize data paths, result in a significant reduction in BIST area overhead and hence total area.