He Zhang, Linjun Jiang, Jianxin Wu, Ting-Yeh Chen, Junzhan Liu, W. Kang, Weisheng Zhao
{"title":"CP-SRAM:用于超高能效内存计算的电荷脉动SRAM marco","authors":"He Zhang, Linjun Jiang, Jianxin Wu, Ting-Yeh Chen, Junzhan Liu, W. Kang, Weisheng Zhao","doi":"10.1145/3489517.3530398","DOIUrl":null,"url":null,"abstract":"SRAM-based computing-in-memory (SRAM-CIM) provides fast speed and good scalability with advanced process technology. However, the energy efficiency of the state-of-the-art current-domain SRAM-CIM bit-cell structure is limited and the peripheral circuitry (e.g., DAC/ADC) for high-precision is expensive. This paper proposes a charge-pulsation SRAM (CP-SRAM) structure to achieve ultra-high energy-efficiency thanks to its charge-domain mechanism. Furthermore, our proposed CP-SRAM CIM supports configurable precision (2/4/6-bit). The CP-SRAM CIM macro was designed in 180nm (with silicon verification) and 40nm (simulation) nodes. The simulation results in 40nm show that our macro can achieve energy efficiency of ~2950Tops/W at 2-bit precision, ~576.4 Tops/W at 4-bit precision and ~111.7 Tops/W at 6-bit precision, respectively.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CP-SRAM: charge-pulsation SRAM marco for ultra-high energy-efficiency computing-in-memory\",\"authors\":\"He Zhang, Linjun Jiang, Jianxin Wu, Ting-Yeh Chen, Junzhan Liu, W. Kang, Weisheng Zhao\",\"doi\":\"10.1145/3489517.3530398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SRAM-based computing-in-memory (SRAM-CIM) provides fast speed and good scalability with advanced process technology. However, the energy efficiency of the state-of-the-art current-domain SRAM-CIM bit-cell structure is limited and the peripheral circuitry (e.g., DAC/ADC) for high-precision is expensive. This paper proposes a charge-pulsation SRAM (CP-SRAM) structure to achieve ultra-high energy-efficiency thanks to its charge-domain mechanism. Furthermore, our proposed CP-SRAM CIM supports configurable precision (2/4/6-bit). The CP-SRAM CIM macro was designed in 180nm (with silicon verification) and 40nm (simulation) nodes. The simulation results in 40nm show that our macro can achieve energy efficiency of ~2950Tops/W at 2-bit precision, ~576.4 Tops/W at 4-bit precision and ~111.7 Tops/W at 6-bit precision, respectively.\",\"PeriodicalId\":373005,\"journal\":{\"name\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 59th ACM/IEEE Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3489517.3530398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CP-SRAM: charge-pulsation SRAM marco for ultra-high energy-efficiency computing-in-memory
SRAM-based computing-in-memory (SRAM-CIM) provides fast speed and good scalability with advanced process technology. However, the energy efficiency of the state-of-the-art current-domain SRAM-CIM bit-cell structure is limited and the peripheral circuitry (e.g., DAC/ADC) for high-precision is expensive. This paper proposes a charge-pulsation SRAM (CP-SRAM) structure to achieve ultra-high energy-efficiency thanks to its charge-domain mechanism. Furthermore, our proposed CP-SRAM CIM supports configurable precision (2/4/6-bit). The CP-SRAM CIM macro was designed in 180nm (with silicon verification) and 40nm (simulation) nodes. The simulation results in 40nm show that our macro can achieve energy efficiency of ~2950Tops/W at 2-bit precision, ~576.4 Tops/W at 4-bit precision and ~111.7 Tops/W at 6-bit precision, respectively.