羟基磷灰石对二水磷酸二钙(DCPD)与氟离子反应的影响

M. Tafu, T. Masutani, Y. Takemura, T. Toshima, T. Chohji
{"title":"羟基磷灰石对二水磷酸二钙(DCPD)与氟离子反应的影响","authors":"M. Tafu, T. Masutani, Y. Takemura, T. Toshima, T. Chohji","doi":"10.4172/2090-5025.S1-015","DOIUrl":null,"url":null,"abstract":"DCPD, dicalcium phosphate dihydrate (CaHPO4•2H2O) reacts with fluoride ion in an aqueous solution, and forms fluorapatite (FAp, Ca10(PO4)6F2). In previous study, we have found that DCPD does not react with fluoride ion directly, but show few hours of induction period by reaction with fluoride. In this study, effect of hydroxyapatite (HA, Ca10(PO4)6(OH)2) on the reactivity of DCPD with fluoride ion was investigated. By mixing HA with DCPD, it was appeared that the induction period of the reaction was shortened. Morphology of the obtained FAp was similar to HA paricles. We carried on coating of HA on the DCPD particle by soaking DCPD in simulated body fluid (SBF, Kokubo Solution). By coating HA on DCPD particles, particle morphology of the obtained FAp was consistency to the DCPD particles. These results suggest that the shape and particle size of FAp after reaction of DCPD is controllable by DCPD particle as template, and coating with HA.","PeriodicalId":127691,"journal":{"name":"Bioceramics Development and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of Hydroxyapatite on Reaction of Dicalcium Phosphate Dihydrate DCPD) and Fluoride Ion\",\"authors\":\"M. Tafu, T. Masutani, Y. Takemura, T. Toshima, T. Chohji\",\"doi\":\"10.4172/2090-5025.S1-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DCPD, dicalcium phosphate dihydrate (CaHPO4•2H2O) reacts with fluoride ion in an aqueous solution, and forms fluorapatite (FAp, Ca10(PO4)6F2). In previous study, we have found that DCPD does not react with fluoride ion directly, but show few hours of induction period by reaction with fluoride. In this study, effect of hydroxyapatite (HA, Ca10(PO4)6(OH)2) on the reactivity of DCPD with fluoride ion was investigated. By mixing HA with DCPD, it was appeared that the induction period of the reaction was shortened. Morphology of the obtained FAp was similar to HA paricles. We carried on coating of HA on the DCPD particle by soaking DCPD in simulated body fluid (SBF, Kokubo Solution). By coating HA on DCPD particles, particle morphology of the obtained FAp was consistency to the DCPD particles. These results suggest that the shape and particle size of FAp after reaction of DCPD is controllable by DCPD particle as template, and coating with HA.\",\"PeriodicalId\":127691,\"journal\":{\"name\":\"Bioceramics Development and Applications\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioceramics Development and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2090-5025.S1-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioceramics Development and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2090-5025.S1-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

DCPD,二水合磷酸二钙(CaHPO4•2H2O)在水溶液中与氟离子反应生成氟磷灰石(FAp, Ca10(PO4)6F2)。在之前的研究中,我们发现DCPD不直接与氟离子反应,但与氟反应诱导期较短。本研究考察了羟基磷灰石(HA, Ca10(PO4)6(OH)2)对DCPD与氟离子反应性的影响。将HA与DCPD混合后,反应的诱导期明显缩短。所得FAp的形貌与HA颗粒相似。通过将DCPD浸泡在模拟体液(SBF, Kokubo Solution)中,对DCPD颗粒进行HA涂层。将HA涂覆在DCPD颗粒上,得到的FAp颗粒形貌与DCPD颗粒一致。结果表明,以DCPD颗粒为模板,涂覆HA,可以控制DCPD反应后FAp的形状和粒径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Hydroxyapatite on Reaction of Dicalcium Phosphate Dihydrate DCPD) and Fluoride Ion
DCPD, dicalcium phosphate dihydrate (CaHPO4•2H2O) reacts with fluoride ion in an aqueous solution, and forms fluorapatite (FAp, Ca10(PO4)6F2). In previous study, we have found that DCPD does not react with fluoride ion directly, but show few hours of induction period by reaction with fluoride. In this study, effect of hydroxyapatite (HA, Ca10(PO4)6(OH)2) on the reactivity of DCPD with fluoride ion was investigated. By mixing HA with DCPD, it was appeared that the induction period of the reaction was shortened. Morphology of the obtained FAp was similar to HA paricles. We carried on coating of HA on the DCPD particle by soaking DCPD in simulated body fluid (SBF, Kokubo Solution). By coating HA on DCPD particles, particle morphology of the obtained FAp was consistency to the DCPD particles. These results suggest that the shape and particle size of FAp after reaction of DCPD is controllable by DCPD particle as template, and coating with HA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modal Analysis of FGM Plates (Sus304/Al2O3) Using FEM Intentional Replantation with 180° Rotation of a Crown-Root Fracture as a Last Expedient: A Case Report Mechanism of Bonding in Seashell Powder Based Ceramic Composites Used for Binder-Jet 3D Printing Effect of βTricalcium Phosphate Nanoparticles Additions on the Properties of Gelatin-Chitosan Scaffolds Hydroxyapatite Scaffolds for Bone Tissue Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1