{"title":"基于稀疏滤波的高光谱解混","authors":"H. Aggarwal, A. Majumdar","doi":"10.1109/WHISPERS.2016.8071765","DOIUrl":null,"url":null,"abstract":"This work proposes a hyperspectral unmixing technique based on sparse filtering approach. The proposed method exploits the sparsity of feature distribution rather than modeling the data distribution. The proposed sparse filtering based unmixing procedure is essentially parameter-free, and the only parameter is to find the number of endmembers to be extracted. This approach is a blind unmixing approach because it does not require prior knowledge of endmember matrix. Experimental results on two real hyperspectral datasets demonstrate that the proposed sparse filtering procedure provide better abundance maps compared to nonnegative matrix factorization based approach.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse filtering based hyperspectral unmixing\",\"authors\":\"H. Aggarwal, A. Majumdar\",\"doi\":\"10.1109/WHISPERS.2016.8071765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a hyperspectral unmixing technique based on sparse filtering approach. The proposed method exploits the sparsity of feature distribution rather than modeling the data distribution. The proposed sparse filtering based unmixing procedure is essentially parameter-free, and the only parameter is to find the number of endmembers to be extracted. This approach is a blind unmixing approach because it does not require prior knowledge of endmember matrix. Experimental results on two real hyperspectral datasets demonstrate that the proposed sparse filtering procedure provide better abundance maps compared to nonnegative matrix factorization based approach.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于稀疏滤波方法的高光谱解混技术。该方法利用特征分布的稀疏性,而不是对数据分布进行建模。所提出的基于稀疏滤波的解混过程基本上是无参数的,唯一的参数是找到要提取的端元的数量。该方法是一种盲解混方法,因为它不需要端元矩阵的先验知识。在两个真实高光谱数据集上的实验结果表明,与基于非负矩阵分解的方法相比,本文提出的稀疏滤波方法提供了更好的丰度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse filtering based hyperspectral unmixing
This work proposes a hyperspectral unmixing technique based on sparse filtering approach. The proposed method exploits the sparsity of feature distribution rather than modeling the data distribution. The proposed sparse filtering based unmixing procedure is essentially parameter-free, and the only parameter is to find the number of endmembers to be extracted. This approach is a blind unmixing approach because it does not require prior knowledge of endmember matrix. Experimental results on two real hyperspectral datasets demonstrate that the proposed sparse filtering procedure provide better abundance maps compared to nonnegative matrix factorization based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1