{"title":"纳米颗粒肺安全性的文献计量学分析。","authors":"Karina Falkiewicz, Izabela Fryca, Krzesimir Ciura, Alicja Mikolajczyk, Karolina Jagiello, Tomasz Puzyn","doi":"10.1080/17435390.2023.2276411","DOIUrl":null,"url":null,"abstract":"<p><p>Assessing research activity is an important step for planning future initiatives oriented toward filling the remaining gaps in a field. Therefore, the objective of the current study was to review recently published research on pulmonary toxicity caused by nanomaterials. However, here, instead of reviewing possible toxic effects and discussing their mode of action, the goal was to establish trends considering for example examined so far nanomaterials or used testing strategies. A total of 2316 related articles retrieved from the three most cited databases (PubMed Scopus, Web of Science), selected based on the title and abstract requirements, were used as the source of the review. Based on the bibliometric analysis, the nano-meter metal oxides, and carbon-based nanotubes were identified as the most frequently studied nanomaterials, while quantum dots, which might induce possible harmful effects, were not considered so far. The majority of testing of pulmonary safety is based on <i>in vitro</i> studies with observed growth of the contribution of novel testing strategies, such as 3D lung model, air-liquid interface system, or omic analysis.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"547-561"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bibliometric analysis of the recent achievements in pulmonary safety of nanoparticles.\",\"authors\":\"Karina Falkiewicz, Izabela Fryca, Krzesimir Ciura, Alicja Mikolajczyk, Karolina Jagiello, Tomasz Puzyn\",\"doi\":\"10.1080/17435390.2023.2276411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assessing research activity is an important step for planning future initiatives oriented toward filling the remaining gaps in a field. Therefore, the objective of the current study was to review recently published research on pulmonary toxicity caused by nanomaterials. However, here, instead of reviewing possible toxic effects and discussing their mode of action, the goal was to establish trends considering for example examined so far nanomaterials or used testing strategies. A total of 2316 related articles retrieved from the three most cited databases (PubMed Scopus, Web of Science), selected based on the title and abstract requirements, were used as the source of the review. Based on the bibliometric analysis, the nano-meter metal oxides, and carbon-based nanotubes were identified as the most frequently studied nanomaterials, while quantum dots, which might induce possible harmful effects, were not considered so far. The majority of testing of pulmonary safety is based on <i>in vitro</i> studies with observed growth of the contribution of novel testing strategies, such as 3D lung model, air-liquid interface system, or omic analysis.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"547-561\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2023.2276411\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2023.2276411","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
评估研究活动是规划面向填补领域剩余空白的未来倡议的重要步骤。因此,本研究的目的是回顾最近发表的关于纳米材料引起的肺毒性的研究。然而,在这里,不是审查可能的毒性作用和讨论它们的作用模式,目标是建立考虑到例如迄今为止研究的纳米材料或使用的测试策略的趋势。根据标题和摘要要求,从三个被引次数最多的数据库(PubMed Scopus, Web of Science)中检索到2316篇相关文章作为综述的来源。基于文献计量学分析,纳米金属氧化物和碳基纳米管是研究最多的纳米材料,而量子点可能引起有害影响,迄今尚未考虑。肺安全性的大多数测试是基于体外研究,观察到新的测试策略的贡献增长,如三维肺模型,气液界面系统或组学分析。
A bibliometric analysis of the recent achievements in pulmonary safety of nanoparticles.
Assessing research activity is an important step for planning future initiatives oriented toward filling the remaining gaps in a field. Therefore, the objective of the current study was to review recently published research on pulmonary toxicity caused by nanomaterials. However, here, instead of reviewing possible toxic effects and discussing their mode of action, the goal was to establish trends considering for example examined so far nanomaterials or used testing strategies. A total of 2316 related articles retrieved from the three most cited databases (PubMed Scopus, Web of Science), selected based on the title and abstract requirements, were used as the source of the review. Based on the bibliometric analysis, the nano-meter metal oxides, and carbon-based nanotubes were identified as the most frequently studied nanomaterials, while quantum dots, which might induce possible harmful effects, were not considered so far. The majority of testing of pulmonary safety is based on in vitro studies with observed growth of the contribution of novel testing strategies, such as 3D lung model, air-liquid interface system, or omic analysis.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.