J J Ilska, D J Tolhurst, H Tumas, J P Maclean, J Cottrell, S J Lee, J Mackay, J A Woolliams
{"title":"幼云杉加性和非加性遗传变异的研究。卡尔)。","authors":"J J Ilska, D J Tolhurst, H Tumas, J P Maclean, J Cottrell, S J Lee, J Mackay, J A Woolliams","doi":"10.1007/s11295-023-01627-5","DOIUrl":null,"url":null,"abstract":"<p><p>Many quantitative genetic models assume that all genetic variation is additive because of a lack of data with sufficient structure and quality to determine the relative contribution of additive and non-additive variation. Here the fractions of additive (<i>f</i><sub><i>a</i></sub>) and non-additive (<i>f</i><sub><i>d</i></sub>) genetic variation were estimated in Sitka spruce for height, bud burst and pilodyn penetration depth. Approximately 1500 offspring were produced in each of three sib families and clonally replicated across three geographically diverse sites. Genotypes from 1525 offspring from all three families were obtained by RADseq, followed by imputation using 1630 loci segregating in all families and mapped using the newly developed linkage map of Sitka spruce. The analyses employed a new approach for estimating <i>f</i><sub><i>a</i></sub> and <i>f</i><sub><i>d</i></sub>, which combined all available genotypic and phenotypic data with spatial modelling for each trait and site. The consensus estimate for <i>f</i><sub><i>a</i></sub> increased with age for height from 0.58 at 2 years to 0.75 at 11 years, with only small overlap in 95% support intervals (<i>I</i><sub>95</sub>). The estimated <i>f</i><sub><i>a</i></sub> for bud burst was 0.83 (<i>I</i><sub>95</sub>=[0.78, 0.90]) and 0.84 (<i>I</i><sub>95</sub>=[0.77, 0.92]) for pilodyn depth. Overall, there was no evidence of family heterogeneity for height or bud burst, or site heterogeneity for pilodyn depth, and no evidence of inbreeding depression associated with genomic homozygosity, expected if dominance variance was the major component of non-additive variance. The results offer no support for the development of sublines for crossing within the species. The models give new opportunities to assess more accurately the scale of non-additive variation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11295-023-01627-5.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Additive and non-additive genetic variance in juvenile Sitka spruce (<i>Picea sitchensis</i> Bong. Carr).\",\"authors\":\"J J Ilska, D J Tolhurst, H Tumas, J P Maclean, J Cottrell, S J Lee, J Mackay, J A Woolliams\",\"doi\":\"10.1007/s11295-023-01627-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many quantitative genetic models assume that all genetic variation is additive because of a lack of data with sufficient structure and quality to determine the relative contribution of additive and non-additive variation. Here the fractions of additive (<i>f</i><sub><i>a</i></sub>) and non-additive (<i>f</i><sub><i>d</i></sub>) genetic variation were estimated in Sitka spruce for height, bud burst and pilodyn penetration depth. Approximately 1500 offspring were produced in each of three sib families and clonally replicated across three geographically diverse sites. Genotypes from 1525 offspring from all three families were obtained by RADseq, followed by imputation using 1630 loci segregating in all families and mapped using the newly developed linkage map of Sitka spruce. The analyses employed a new approach for estimating <i>f</i><sub><i>a</i></sub> and <i>f</i><sub><i>d</i></sub>, which combined all available genotypic and phenotypic data with spatial modelling for each trait and site. The consensus estimate for <i>f</i><sub><i>a</i></sub> increased with age for height from 0.58 at 2 years to 0.75 at 11 years, with only small overlap in 95% support intervals (<i>I</i><sub>95</sub>). The estimated <i>f</i><sub><i>a</i></sub> for bud burst was 0.83 (<i>I</i><sub>95</sub>=[0.78, 0.90]) and 0.84 (<i>I</i><sub>95</sub>=[0.77, 0.92]) for pilodyn depth. Overall, there was no evidence of family heterogeneity for height or bud burst, or site heterogeneity for pilodyn depth, and no evidence of inbreeding depression associated with genomic homozygosity, expected if dominance variance was the major component of non-additive variance. The results offer no support for the development of sublines for crossing within the species. The models give new opportunities to assess more accurately the scale of non-additive variation.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11295-023-01627-5.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11295-023-01627-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11295-023-01627-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Additive and non-additive genetic variance in juvenile Sitka spruce (Picea sitchensis Bong. Carr).
Many quantitative genetic models assume that all genetic variation is additive because of a lack of data with sufficient structure and quality to determine the relative contribution of additive and non-additive variation. Here the fractions of additive (fa) and non-additive (fd) genetic variation were estimated in Sitka spruce for height, bud burst and pilodyn penetration depth. Approximately 1500 offspring were produced in each of three sib families and clonally replicated across three geographically diverse sites. Genotypes from 1525 offspring from all three families were obtained by RADseq, followed by imputation using 1630 loci segregating in all families and mapped using the newly developed linkage map of Sitka spruce. The analyses employed a new approach for estimating fa and fd, which combined all available genotypic and phenotypic data with spatial modelling for each trait and site. The consensus estimate for fa increased with age for height from 0.58 at 2 years to 0.75 at 11 years, with only small overlap in 95% support intervals (I95). The estimated fa for bud burst was 0.83 (I95=[0.78, 0.90]) and 0.84 (I95=[0.77, 0.92]) for pilodyn depth. Overall, there was no evidence of family heterogeneity for height or bud burst, or site heterogeneity for pilodyn depth, and no evidence of inbreeding depression associated with genomic homozygosity, expected if dominance variance was the major component of non-additive variance. The results offer no support for the development of sublines for crossing within the species. The models give new opportunities to assess more accurately the scale of non-additive variation.
Supplementary information: The online version contains supplementary material available at 10.1007/s11295-023-01627-5.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.