铜-金刚石复合导热材料的制备及性能表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-11-17 DOI:10.1007/s12217-023-10082-9
Shuai Wang, Xiang Ma, Quan Gao, Jinyu Wang, Na Xu, Yonghai Zhang, Jinjia Wei, Jianfu Zhao, Bin Li
{"title":"铜-金刚石复合导热材料的制备及性能表征","authors":"Shuai Wang,&nbsp;Xiang Ma,&nbsp;Quan Gao,&nbsp;Jinyu Wang,&nbsp;Na Xu,&nbsp;Yonghai Zhang,&nbsp;Jinjia Wei,&nbsp;Jianfu Zhao,&nbsp;Bin Li","doi":"10.1007/s12217-023-10082-9","DOIUrl":null,"url":null,"abstract":"<div><p>An experimental investigation was conducted to prepare and study the thermal conductivity performance of copper and diamond composite materials. Copper powder and diamond particles were used as fillers, epoxy resin was used as matrix, and composite materials were prepared by vacuum-assisted mechanical stirring. The thermal expansion coefficient of different composite materials was measured by a laser flash method, which can be used to calculate the thermal conductivity. The effect of the filling rate of copper powder, the morphology of copper powder, the filling rate of diamond, and the thermal conductivity of the particles on the thermal conductivity of composite materials was studied. The results showed that thermal conductivity of copper powder and diamond particles composite materials were 874% and 535% higher than that of the epoxy resin when their filling rates were 50.3 vol.% and 40.0 vol.%, respectively. For two-dimensional flake copper powder materials, the thermal conductivity could be effectively improved at a lower filling rate. However, the flake particles were easy to aggregate at a high filling rate, which maybe cause the composite materials to pulverize.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Performance Characterization of Copper and Diamond Filled Composite Thermal Conductivity Materials\",\"authors\":\"Shuai Wang,&nbsp;Xiang Ma,&nbsp;Quan Gao,&nbsp;Jinyu Wang,&nbsp;Na Xu,&nbsp;Yonghai Zhang,&nbsp;Jinjia Wei,&nbsp;Jianfu Zhao,&nbsp;Bin Li\",\"doi\":\"10.1007/s12217-023-10082-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An experimental investigation was conducted to prepare and study the thermal conductivity performance of copper and diamond composite materials. Copper powder and diamond particles were used as fillers, epoxy resin was used as matrix, and composite materials were prepared by vacuum-assisted mechanical stirring. The thermal expansion coefficient of different composite materials was measured by a laser flash method, which can be used to calculate the thermal conductivity. The effect of the filling rate of copper powder, the morphology of copper powder, the filling rate of diamond, and the thermal conductivity of the particles on the thermal conductivity of composite materials was studied. The results showed that thermal conductivity of copper powder and diamond particles composite materials were 874% and 535% higher than that of the epoxy resin when their filling rates were 50.3 vol.% and 40.0 vol.%, respectively. For two-dimensional flake copper powder materials, the thermal conductivity could be effectively improved at a lower filling rate. However, the flake particles were easy to aggregate at a high filling rate, which maybe cause the composite materials to pulverize.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-023-10082-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-023-10082-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对铜金刚石复合材料的导热性能进行了实验研究。以铜粉和金刚石颗粒为填料,环氧树脂为基体,采用真空辅助机械搅拌法制备复合材料。采用激光闪蒸法测量了不同复合材料的热膨胀系数,可用于计算复合材料的导热系数。研究了铜粉填充率、铜粉形貌、金刚石填充率和颗粒导热系数对复合材料导热系数的影响。结果表明:当铜粉和金刚石颗粒填充率分别为50.3 vol.%和40.0 vol.%时,复合材料的导热系数分别比环氧树脂高874%和535%;对于二维片状铜粉材料,在较低的填充率下,可以有效地提高其导热性。然而,在高填充率下,片状颗粒容易聚集,这可能导致复合材料粉碎。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Performance Characterization of Copper and Diamond Filled Composite Thermal Conductivity Materials

An experimental investigation was conducted to prepare and study the thermal conductivity performance of copper and diamond composite materials. Copper powder and diamond particles were used as fillers, epoxy resin was used as matrix, and composite materials were prepared by vacuum-assisted mechanical stirring. The thermal expansion coefficient of different composite materials was measured by a laser flash method, which can be used to calculate the thermal conductivity. The effect of the filling rate of copper powder, the morphology of copper powder, the filling rate of diamond, and the thermal conductivity of the particles on the thermal conductivity of composite materials was studied. The results showed that thermal conductivity of copper powder and diamond particles composite materials were 874% and 535% higher than that of the epoxy resin when their filling rates were 50.3 vol.% and 40.0 vol.%, respectively. For two-dimensional flake copper powder materials, the thermal conductivity could be effectively improved at a lower filling rate. However, the flake particles were easy to aggregate at a high filling rate, which maybe cause the composite materials to pulverize.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1